lod_reset_op.h 2.8 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16 17 18 19 20 21 22

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

Q
QI JUN 已提交
23
template <typename DeviceContext, typename T>
24 25 26 27 28 29 30 31 32 33 34 35
class LoDResetKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* out = ctx.Output<framework::LoDTensor>("Out");
    auto* in = ctx.Input<framework::LoDTensor>("X");
    auto* lod_t = ctx.Input<framework::Tensor>("TargetLoD");

    std::vector<int> level0;
    if (lod_t) {
      auto* lod = lod_t->data<int>();
      if (platform::is_gpu_place(ctx.GetPlace())) {
        framework::Tensor lod_cpu;
D
dzhwinter 已提交
36 37
        framework::CopyFrom(*lod_t, platform::CPUPlace(), ctx.device_context(),
                            &lod_cpu);
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
        lod = lod_cpu.data<int>();
      }
      level0 = std::vector<int>(lod, lod + lod_t->numel());
    } else {
      level0 = ctx.Attr<std::vector<int>>("target_lod");
    }

    PADDLE_ENFORCE(level0.size() > 1UL,
                   "The size of target LoD should be greater than 1.");
    PADDLE_ENFORCE(level0[0] == 0,
                   "Target LoD should be a vector starting from 0.");
    PADDLE_ENFORCE(level0.back() == in->dims()[0],
                   "Target LoD should be a vector end with the "
                   "first dimension of Input(X).");
    for (size_t i = 0; i < level0.size() - 1; ++i) {
      PADDLE_ENFORCE(level0[i + 1] > level0[i],
                     "Target LoD should be an ascending vector.");
    }

    out->ShareDataWith(*in);
Y
Yibing Liu 已提交
58
    // cast level0 to size_t
59 60 61 62 63 64 65 66 67
    std::vector<size_t> ulevel0(level0.size(), 0);
    std::transform(level0.begin(), level0.end(), ulevel0.begin(),
                   [](int a) { return static_cast<size_t>(a); });
    framework::LoD target_lod;
    target_lod.push_back(ulevel0);
    out->set_lod(target_lod);
  }
};

Q
QI JUN 已提交
68
template <typename DeviceContext, typename T>
69 70 71 72 73 74 75 76 77 78 79
class LoDResetGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));

    d_x->ShareDataWith(*d_out);
  }
};
}  // namespace operators
}  // namespace paddle