bkcl_context.cc 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#if defined(PADDLE_WITH_XPU_BKCL)
#include "paddle/fluid/imperative/bkcl_context.h"

#include <string>
#include <utility>
#include <vector>

#include "paddle/fluid/platform/bkcl_helper.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/gen_comm_id_helper.h"

#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/split.h"
#include "paddle/fluid/string/string_helper.h"

namespace paddle {
namespace imperative {

static void AllReduce(const framework::Tensor &src, framework::Tensor *dst,
                      const XPUStream stream, const platform::BKCLComm *comm) {
  const auto &place = src.place();
  PADDLE_ENFORCE_EQ(
      platform::is_xpu_place(place), true,
      platform::errors::Unimplemented(
          "Dynamic graph mode does not support multi-CPU training yet."));

  const void *src_ptr = src.data<void>();
  dst->Resize(src.dims());
  auto *dst_ptr = dst->mutable_data(src.place(), src.type());
  auto bkcl_dtype = platform::ToBKCLDataType(src.type());

  PADDLE_ENFORCE_EQ(bkcl_all_reduce(comm->comm(), src_ptr, dst_ptr, src.numel(),
                                    bkcl_dtype, BKCL_ADD, stream),
                    BKCL_SUCCESS, platform::errors::PreconditionNotMet(
                                      "BKCL all reduce failed"));
}
/*
Baidu Kunlun Communication Library(BKCL) is designed for multi Baidu Kunlun
cards communication
as NVIDIA Collective Communications Library(NCCL) in multi Nvidia GPU cards.
Please refer to bkcl.h in xpu.tar.gz linked in cmake/external/xpu.cmake.
*/
void BKCLParallelContext::BcastBKCLId(
    std::vector<BKCLUniqueId> &bkcl_ids,  // NOLINT
    int root) {
  if (strategy_.local_rank_ == root) {
    std::vector<std::string> other_trainers;
    for (auto &ep : strategy_.trainer_endpoints_) {
      if (ep != strategy_.current_endpoint_) {
        other_trainers.push_back(ep);
      }
    }
    platform::SendBroadCastCommID(other_trainers, &bkcl_ids);
  } else {
    platform::RecvBroadCastCommID(strategy_.current_endpoint_, &bkcl_ids);
  }
}

void BKCLParallelContext::Init() {
  std::vector<BKCLUniqueId> bkcl_ids;
  bkcl_ids.resize(strategy_.nrings_);

  if (strategy_.local_rank_ == 0) {
    // generate the unique ncclid on the root worker
    for (size_t i = 0; i < bkcl_ids.size(); ++i) {
      auto ret = bkcl_get_unique_id(&bkcl_ids[i]);
      PADDLE_ENFORCE_EQ(BKCL_SUCCESS, ret,
                        platform::errors::PreconditionNotMet(
                            "BKCL get unique id failed [%d]", ret));
    }
  }
  BcastBKCLId(bkcl_ids, 0);

  int xpu_id = BOOST_GET_CONST(platform::XPUPlace, place_).device;
  for (int ring_id = 0; ring_id < strategy_.nrings_; ring_id++) {
    VLOG(0) << "init BKCL context nranks: " << strategy_.nranks_
            << " local rank: " << strategy_.local_rank_ << " xpu id: " << xpu_id
            << " ring id: " << ring_id;
    // it will assign bkcl_comm in XPUDeviceContext within ring_id
    platform::BKCLCommContext::Instance().CreateBKCLComm(
        &bkcl_ids[ring_id], strategy_.nranks_, strategy_.local_rank_, xpu_id,
        ring_id);
  }
}

void BKCLParallelContext::AllReduceByStream(const framework::Variable &src,
                                            framework::Variable *dst,
                                            int ring_id, bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      platform::is_xpu_place(place_), true,
      platform::errors::Unimplemented(
          "Dynamic graph mode does not support multi-CPU training yet."));
  auto place = place_;

  auto *dev_ctx = static_cast<platform::XPUDeviceContext *>(
      platform::DeviceContextPool::Instance().Get(place));
  platform::BKCLComm *comm =
      platform::BKCLCommContext::Instance().Get(ring_id, place);
  XPUStream stream =
      use_calc_stream ? dev_ctx->x_context()->xpu_stream : comm->stream();

  if (src.IsType<framework::LoDTensor>()) {
    if (!dst->IsType<framework::LoDTensor>()) {
      dst->Clear();
    }
    AllReduce(src.Get<framework::LoDTensor>(),
              dst->GetMutable<framework::LoDTensor>(), stream, comm);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "XPU unsupported variable type %s for imperative allreduce, only "
        "LoDTensor are supported.",
        platform::demangle(framework::ToTypeName(src.Type()))));
  }
}

paddle::platform::DeviceContext *BKCLParallelContext::GetDeviceContext(
    int ring_id) {
  return static_cast<platform::DeviceContext *>(
      platform::BKCLCommContext::Instance()
          .Get(ring_id, place_)
          ->dev_context());
}

void BKCLParallelContext::WaitCompute(int ring_id) {
  PADDLE_ENFORCE_GE(ring_id, 0,
                    platform::errors::OutOfRange(
                        "Ring id expected >= 0, but got %d", ring_id));
  PADDLE_ENFORCE_LT(
      ring_id, strategy_.nrings_,
      platform::errors::OutOfRange("Ring id expected < nrings,"
                                   "but got ring id = %d, nrings = %d",
                                   ring_id, strategy_.nrings_));
  // TODO(wangxi16): [Performance optimize] Maybe need to put Wait and
  // bkcl_allreduce to comm thread, for bkcl_allreduce is blocking now.
  auto compute_dev_ctx = static_cast<platform::XPUDeviceContext *>(
      platform::DeviceContextPool::Instance().Get(place_));
  compute_dev_ctx->Wait();
}

void BKCLParallelContext::WaitComm(int ring_id) {
  PADDLE_ENFORCE_GE(ring_id, 0,
                    platform::errors::OutOfRange(
                        "Ring id expected >= 0, but got %d", ring_id));
  PADDLE_ENFORCE_LT(
      ring_id, strategy_.nrings_,
      platform::errors::OutOfRange("Ring id expected < nrings,"
                                   "but got ring id = %d, nrings = %d",
                                   ring_id, strategy_.nrings_));
  auto comm_dev_ctx =
      platform::BKCLCommContext::Instance().Get(ring_id, place_)->dev_context();
  comm_dev_ctx->Wait();
}

}  //  namespace imperative
}  //  namespace paddle
#endif