test_sparse_conv3d_dev_api.cc 27.9 KB
Newer Older
Z
zhangkaihuo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

18
#include "paddle/phi/backends/gpu/gpu_context.h"
Z
zhangkaihuo 已提交
19 20
#include "paddle/phi/common/place.h"
#include "paddle/phi/kernels/copy_kernel.h"
21
#include "paddle/phi/kernels/sparse/convolution_grad_kernel.h"
Z
zhangkaihuo 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#include "paddle/phi/kernels/sparse/convolution_kernel.h"

#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {
namespace tests {

std::vector<int> flatten(const std::vector<std::vector<int>>& in) {
  std::vector<int> out;
  if (in.size() == 0) return out;
  const int cols = in[0].size();
  out.resize(in.size() * cols);
  for (uint64_t i = 0; i < in.size(); i++) {
    memcpy(&out[i * cols], in[i].data(), cols * sizeof(int));
  }
  return out;
}

template <typename T1, typename T2>
std::vector<T2> cast(const std::vector<T1>& in) {
  std::vector<T2> out(in.size());
  for (uint64_t i = 0; i < in.size(); i++) {
    out[i] = static_cast<T2>(in[i]);
  }
  return out;
}

template <typename T>
void TestConv3dBase(const std::vector<int>& indices,
                    const std::vector<T>& features,
                    const DDim& x_dims,
                    const std::vector<T>& kernel,
                    const DDim& kernel_dims,
                    const std::vector<int>& correct_out_indices,
                    const std::vector<T>& correct_out_features,
                    const DDim& correct_out_dims,
                    const int non_zero_num,
                    const std::vector<int>& paddings,
                    const std::vector<int>& strides,
                    const std::vector<int>& dilations,
64 65 66
                    const float diff = 1e-3,
                    const bool backward = false,
                    const std::vector<T> features_grad = {},
Z
zhangkaihuo 已提交
67 68
                    const std::vector<T> kernel_grad = {},
                    const bool subm = false) {
Z
zhangkaihuo 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  phi::CPUContext dev_ctx_cpu;
  dev_ctx_cpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
  dev_ctx_cpu.Init();

  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];

  DenseTensor indices_tensor = phi::Empty(
      dev_ctx_cpu,
      DenseTensorMeta(DataType::INT32, {4, non_zero_num}, DataLayout::NCHW));
  memcpy(
      indices_tensor.data<int>(), indices.data(), indices.size() * sizeof(int));
  DenseTensor features_tensor = phi::Empty(
      dev_ctx_cpu,
      DenseTensorMeta(paddle::experimental::CppTypeToDataType<T>::Type(),
                      {non_zero_num, in_channels},
                      DataLayout::NHWC));
  memcpy(
      features_tensor.data<T>(), features.data(), features.size() * sizeof(T));

  SparseCooTensor x_tensor(indices_tensor, features_tensor, x_dims);

  DenseTensor kernel_tensor = phi::Empty(
      dev_ctx_cpu,
      DenseTensorMeta(paddle::experimental::CppTypeToDataType<T>::Type(),
                      kernel_dims,
                      DataLayout::NHWC));
  memcpy(kernel_tensor.data<T>(), kernel.data(), kernel.size() * sizeof(T));

101 102 103 104 105 106 107
  auto f_verify = [&](const T* real_data, const std::vector<T>& correct_data) {
    for (uint64_t i = 0; i < correct_data.size(); i++) {
      float tmp = std::fabs(static_cast<float>(correct_data[i] - real_data[i]));
      ASSERT_LT(tmp, diff);
    }
  };

Z
zhangkaihuo 已提交
108
  if (!std::is_same<T, phi::dtype::float16>::value) {
109 110
    DenseTensor rulebook = phi::Empty(
        dev_ctx_cpu, DenseTensorMeta(DataType::INT32, {1}, DataLayout::NCHW));
Z
zhangkaihuo 已提交
111 112 113 114 115 116 117
    SparseCooTensor out = sparse::Conv3d<T>(dev_ctx_cpu,
                                            x_tensor,
                                            kernel_tensor,
                                            paddings,
                                            dilations,
                                            strides,
                                            1,
Z
zhangkaihuo 已提交
118
                                            subm,
Z
zhangkaihuo 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131
                                            &rulebook);

    ASSERT_EQ(correct_out_dims.size(), out.dims().size());
    for (int i = 0; i < correct_out_dims.size(); i++) {
      ASSERT_EQ(correct_out_dims[i], out.dims()[i]);
    }
    ASSERT_EQ((int64_t)correct_out_features.size() / out_channels, out.nnz());

    int cmp_indices = memcmp(correct_out_indices.data(),
                             out.non_zero_indices().data<int>(),
                             correct_out_indices.size() * sizeof(int));
    ASSERT_EQ(cmp_indices, 0);

132 133 134
    f_verify(out.non_zero_elements().data<T>(), correct_out_features);

    if (backward) {
Z
zhangkaihuo 已提交
135 136 137 138 139 140 141 142 143 144 145
      std::vector<DenseTensor> grads =
          sparse::Conv3dGrad<T>(dev_ctx_cpu,
                                x_tensor,
                                rulebook,
                                kernel_tensor,
                                out.non_zero_elements(),
                                paddings,
                                dilations,
                                strides,
                                1,
                                subm);
146 147
      f_verify(grads[0].data<T>(), features_grad);
      f_verify(grads[1].data<T>(), kernel_grad);
Z
zhangkaihuo 已提交
148 149
    }
  }
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

// test gpu
#if defined(PADDLE_WITH_CUDA)
  phi::GPUContext dev_ctx_gpu;
  dev_ctx_gpu.PartialInitWithoutAllocator();
  dev_ctx_gpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(dev_ctx_gpu.GetPlace(), dev_ctx_gpu.stream())
          .get());
  dev_ctx_gpu.SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(phi::CPUPlace())
          .get());
  dev_ctx_gpu.PartialInitWithAllocator();

  DenseTensor d_indices_tensor = phi::Empty(
      dev_ctx_gpu,
      DenseTensorMeta(DataType::INT32, {4, non_zero_num}, DataLayout::NCHW));
  phi::Copy(
      dev_ctx_gpu, indices_tensor, phi::GPUPlace(), true, &d_indices_tensor);

  DenseTensor d_features_tensor = phi::Empty(
      dev_ctx_gpu,
      DenseTensorMeta(paddle::experimental::CppTypeToDataType<T>::Type(),
                      {non_zero_num, in_channels},
                      DataLayout::NHWC));
  phi::Copy(
      dev_ctx_gpu, features_tensor, phi::GPUPlace(), true, &d_features_tensor);

  SparseCooTensor d_x_tensor(d_indices_tensor, d_features_tensor, x_dims);

  DenseTensor d_kernel_tensor = phi::Empty(
      dev_ctx_gpu,
      DenseTensorMeta(paddle::experimental::CppTypeToDataType<T>::Type(),
                      kernel_dims,
                      DataLayout::NHWC));
  phi::Copy(
      dev_ctx_gpu, kernel_tensor, phi::GPUPlace(), true, &d_kernel_tensor);

189 190
  DenseTensor d_rulebook = phi::Empty(
      dev_ctx_gpu, DenseTensorMeta(DataType::INT32, {1}, DataLayout::NCHW));
191 192 193 194 195 196 197
  SparseCooTensor d_out = sparse::Conv3d<T>(dev_ctx_gpu,
                                            d_x_tensor,
                                            d_kernel_tensor,
                                            paddings,
                                            dilations,
                                            strides,
                                            1,
Z
zhangkaihuo 已提交
198
                                            subm,
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
                                            &d_rulebook);

  ASSERT_EQ(correct_out_dims.size(), d_out.dims().size());
  ASSERT_EQ((int64_t)correct_out_features.size() / out_channels, d_out.nnz());
  for (int i = 0; i < correct_out_dims.size(); i++) {
    ASSERT_EQ(correct_out_dims[i], d_out.dims()[i]);
  }

  DenseTensor h_indices_tensor = phi::Empty(
      dev_ctx_cpu,
      DenseTensorMeta(DataType::INT32, {4, d_out.nnz()}, DataLayout::NCHW));
  phi::Copy(dev_ctx_gpu,
            d_out.non_zero_indices(),
            phi::CPUPlace(),
            true,
            &h_indices_tensor);

  int cmp_indices2 = memcmp(correct_out_indices.data(),
                            h_indices_tensor.data<int>(),
                            correct_out_indices.size() * sizeof(int));
  ASSERT_EQ(cmp_indices2, 0);

  DenseTensor h_features_tensor = phi::Empty(
      dev_ctx_cpu,
      DenseTensorMeta(paddle::experimental::CppTypeToDataType<T>::Type(),
                      {d_out.nnz()},
                      d_out.layout()));

  phi::Copy(dev_ctx_gpu,
            d_out.non_zero_elements(),
            phi::CPUPlace(),
            true,
            &h_features_tensor);
232 233 234
  f_verify(h_features_tensor.data<T>(), correct_out_features);

  if (backward) {
Z
zhangkaihuo 已提交
235 236 237 238 239 240 241 242 243 244 245
    std::vector<DenseTensor> grads =
        sparse::Conv3dGrad<T>(dev_ctx_gpu,
                              d_x_tensor,
                              d_rulebook,
                              d_kernel_tensor,
                              d_out.non_zero_elements(),
                              paddings,
                              dilations,
                              strides,
                              1,
                              subm);
246 247 248 249 250 251 252 253 254 255 256
    DenseTensor h_features_grad = phi::Empty(
        dev_ctx_cpu,
        DenseTensorMeta(grads[0].dtype(), grads[0].dims(), grads[0].layout()));
    phi::Copy(dev_ctx_gpu, grads[0], phi::CPUPlace(), true, &h_features_grad);
    f_verify(h_features_grad.data<T>(), features_grad);

    DenseTensor h_kernel_grad = phi::Empty(
        dev_ctx_cpu,
        DenseTensorMeta(grads[1].dtype(), grads[1].dims(), grads[1].layout()));
    phi::Copy(dev_ctx_gpu, grads[1], phi::CPUPlace(), true, &h_kernel_grad);
    f_verify(h_kernel_grad.data<T>(), kernel_grad);
257 258
  }
#endif
Z
zhangkaihuo 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271
}

void TestConv3d(const std::vector<int>& indices,
                const std::vector<float>& features,
                const DDim& x_dims,
                const std::vector<float>& kernel,
                const DDim& kernel_dims,
                const std::vector<int>& correct_out_indices,
                const std::vector<float>& correct_out_features,
                const DDim& correct_out_dims,
                const int non_zero_num,
                const std::vector<int>& paddings,
                const std::vector<int>& strides,
272 273 274 275
                const std::vector<int>& dilations,
                const float diff = 1e-3,
                const bool backward = false,
                const std::vector<float> features_grad = {},
Z
zhangkaihuo 已提交
276 277
                const std::vector<float> kernel_grad = {},
                const bool subm = false) {
Z
zhangkaihuo 已提交
278 279 280 281 282 283 284 285 286 287 288 289
  // test float
  TestConv3dBase<float>(indices,
                        features,
                        x_dims,
                        kernel,
                        kernel_dims,
                        correct_out_indices,
                        correct_out_features,
                        correct_out_dims,
                        non_zero_num,
                        paddings,
                        strides,
290 291 292 293
                        dilations,
                        diff,
                        backward,
                        features_grad,
Z
zhangkaihuo 已提交
294 295
                        kernel_grad,
                        subm);
Z
zhangkaihuo 已提交
296 297 298 299 300 301 302 303 304 305 306 307
  // test double
  TestConv3dBase<double>(indices,
                         cast<float, double>(features),
                         x_dims,
                         cast<float, double>(kernel),
                         kernel_dims,
                         correct_out_indices,
                         cast<float, double>(correct_out_features),
                         correct_out_dims,
                         non_zero_num,
                         paddings,
                         strides,
308 309 310 311
                         dilations,
                         diff,
                         backward,
                         cast<float, double>(features_grad),
Z
zhangkaihuo 已提交
312 313
                         cast<float, double>(kernel_grad),
                         subm);
Z
zhangkaihuo 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
}

TEST(DEV_API, sparse_conv3d) {
  const int in_channels = 1;
  const int out_channels = 1;
  DDim x_dims = {1, 4, 4, 4, in_channels};
  DDim kernel_dims = {3, 3, 3, in_channels, out_channels};
  DDim out_dims = {1, 2, 2, 2, out_channels};
  std::vector<int> paddings = {0, 0, 0};
  std::vector<int> strides = {1, 1, 1};
  std::vector<int> dilations = {1, 1, 1};

  const int non_zero_num = 4;
  std::vector<std::vector<int>> indices = {
      {0, 0, 0, 0}, {0, 2, 0, 2}, {3, 2, 2, 3}, {3, 2, 3, 2}};
  std::vector<int> indices_flatten = flatten(indices);

  std::vector<float> features = {-0.2883, 0.0287, 0.2864, -0.0992};
  // 3*3*3=27
  std::vector<float> kernel = {
      0.4721, 0.2292, 0.9751, 0.8616, 0.5784, 0.9178, 0.8727, 0.1659, 0.4455,

      0.0189, 0.4646, 0.4472, 0.1991, 0.8968, 0.3717, 0.0051, 0.6963, 0.2690,

      0.7473, 0.5403, 0.5391, 0.0796, 0.4734, 0.9097, 0.1712, 0.6237, 0.8837};

  std::vector<std::vector<int>> out_indices = {{0, 0, 0, 0, 0, 0, 0, 0},
                                               {0, 0, 0, 0, 1, 1, 1, 1},
                                               {0, 0, 1, 1, 0, 0, 1, 1},
                                               {0, 1, 0, 1, 0, 1, 0, 1}};
  std::vector<int> out_indices_flatten = flatten(out_indices);

  std::vector<float> out_features = {
      0.0254, 0.1455, -0.0615, 0.0862, 0.0077, 0.0200, -0.0160, -0.0433};

  TestConv3d(indices_flatten,
             features,
             x_dims,
             kernel,
             kernel_dims,
             out_indices_flatten,
             out_features,
             out_dims,
             non_zero_num,
             paddings,
             strides,
             dilations);
}

TEST(DEV_API, sparse_conv3d_batch) {
  const int in_channels = 1;
  const int out_channels = 1;
  DDim x_dims = {2, 4, 4, 4, in_channels};
  DDim kernel_dims = {3, 3, 3, in_channels, out_channels};
  DDim out_dims = {2, 2, 2, 2, out_channels};
  std::vector<int> paddings = {0, 0, 0};
  std::vector<int> strides = {1, 1, 1};
  std::vector<int> dilations = {1, 1, 1};

  const int non_zero_num = 8;
  std::vector<std::vector<int>> indices = {{0, 0, 0, 0, 1, 1, 1, 1},
                                           {0, 2, 0, 2, 0, 2, 0, 2},
                                           {3, 2, 2, 3, 3, 2, 2, 3},
                                           {3, 2, 3, 2, 3, 2, 3, 2}};
  std::vector<int> indices_flatten = flatten(indices);

  std::vector<float> features = {
      -0.2883, 0.0287, 0.2864, -0.0992, -0.2883, 0.0287, 0.2864, -0.0992};
  // 3*3*3=27
  std::vector<float> kernel = {
      0.4721, 0.2292, 0.9751, 0.8616, 0.5784, 0.9178, 0.8727, 0.1659, 0.4455,

      0.0189, 0.4646, 0.4472, 0.1991, 0.8968, 0.3717, 0.0051, 0.6963, 0.2690,

      0.7473, 0.5403, 0.5391, 0.0796, 0.4734, 0.9097, 0.1712, 0.6237, 0.8837};

  std::vector<std::vector<int>> out_indices = {
      {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1},
      {0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1},
      {0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1},
      {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}};
  std::vector<int> out_indices_flatten = flatten(out_indices);

  std::vector<float> out_features = {0.0254,
                                     0.1455,
                                     -0.0615,
                                     0.0862,
                                     0.0077,
                                     0.0200,
                                     -0.0160,
                                     -0.0433,
                                     0.0254,
                                     0.1455,
                                     -0.0615,
                                     0.0862,
                                     0.0077,
                                     0.0200,
                                     -0.0160,
                                     -0.0433};

  TestConv3d(indices_flatten,
             features,
             x_dims,
             kernel,
             kernel_dims,
             out_indices_flatten,
             out_features,
             out_dims,
             non_zero_num,
             paddings,
             strides,
             dilations);
}

TEST(DEV_API, sparse_conv3d_stride) {
  const int in_channels = 1;
  const int out_channels = 1;
  DDim x_dims = {1, 4, 4, 4, in_channels};
  DDim kernel_dims = {3, 3, 3, in_channels, out_channels};
  DDim out_dims = {1, 1, 1, 1, out_channels};
  std::vector<int> paddings = {0, 0, 0};
  std::vector<int> strides = {2, 2, 2};
  std::vector<int> dilations = {1, 1, 1};

  const int non_zero_num = 3;
  std::vector<std::vector<int>> indices = {
      {0, 0, 0}, {0, 2, 0}, {3, 2, 2}, {3, 2, 3}};
  std::vector<int> indices_flatten = flatten(indices);

  std::vector<float> features = {-0.28833008, 0.02873230, 0.28637695};
  // 3*3*3=27
  std::vector<float> kernel = {
      0.45043945, 0.47216797, 0.22924805, 0.97509766, 0.86181641, 0.57861328,
      0.91796875, 0.87255859, 0.16589355, 0.44555664, 0.01889038, 0.46459961,
      0.44726562, 0.19909668, 0.89697266, 0.37158203, 0.00513077, 0.69628906,
      0.26904297, 0.74707031, 0.54003906, 0.5390625,  0.07958984, 0.47338867,
      0.90966797, 0.17126465, 0.62353516};

  std::vector<std::vector<int>> out_indices = {{0, 0, 0, 0}};
  std::vector<int> out_indices_flatten = flatten(out_indices);

  std::vector<float> out_features = {0.01791};

  TestConv3d(indices_flatten,
             features,
             x_dims,
             kernel,
             kernel_dims,
             out_indices_flatten,
             out_features,
             out_dims,
             non_zero_num,
             paddings,
             strides,
             dilations);
}

TEST(DEV_API, sparse_conv3d_dilation) {
  const int in_channels = 1;
  const int out_channels = 1;
  DDim x_dims = {1, 6, 6, 6, in_channels};
  DDim kernel_dims = {3, 3, 3, in_channels, out_channels};
  DDim out_dims = {1, 2, 2, 2, out_channels};
  std::vector<int> paddings = {0, 0, 0};
  std::vector<int> strides = {1, 1, 1};
  std::vector<int> dilations = {2, 2, 2};

  const int non_zero_num = 3;
  std::vector<std::vector<int>> indices = {
      {0, 0, 0}, {2, 3, 3}, {2, 3, 3}, {5, 2, 0}};
  std::vector<int> indices_flatten = flatten(indices);

  std::vector<float> features = {-0.78710938, -0.64746094, 0.98828125};
  // 3*3*3=27
  std::vector<float> kernel = {
      0.20617676, 0.99365234, 0.16760254, 0.30639648, 0.41479492, 0.75732422,
      0.65625,    0.48535156, 0.72167969, 0.56005859, 0.5,        0.3581543,
      0.20324707, 0.88769531, 0.81298828, 0.58398438, 0.30810547, 0.12634277,
      0.70507812, 0.38720703, 0.34814453, 0.02690125, 0.80273438, 0.90625,
      0.2277832,  0.4362793,  0.44482422};

  std::vector<std::vector<int>> out_indices = {{0, 0, 0, 1, 0, 1, 1, 0}};
  std::vector<int> out_indices_flatten = flatten(out_indices);

  std::vector<float> out_features = {-0.64014, -0.37402};

  TestConv3d(indices_flatten,
             features,
             x_dims,
             kernel,
             kernel_dims,
             out_indices_flatten,
             out_features,
             out_dims,
             non_zero_num,
             paddings,
             strides,
             dilations);
}

TEST(DEV_API, sparse_conv3d_padding) {
  const int in_channels = 1;
  const int out_channels = 1;
  DDim x_dims = {1, 3, 3, 3, in_channels};
  DDim kernel_dims = {3, 3, 3, in_channels, out_channels};
  DDim out_dims = {1, 3, 3, 3, out_channels};
  std::vector<int> paddings = {1, 1, 1};
  std::vector<int> strides = {1, 1, 1};
  std::vector<int> dilations = {1, 1, 1};

  const int non_zero_num = 1;
  std::vector<std::vector<int>> indices = {{0, 1, 0, 0}};
  std::vector<int> indices_flatten = flatten(indices);

  std::vector<float> features = {-0.79394531};
  // 3*3*3=27
  std::vector<float> kernel = {
      0.34375,    0.22485352, 0.65820312, 0.75048828, 0.21411133, 0.17370605,
      0.85546875, 0.53076172, 0.28833008, 0.71044922, 0.00659943, 0.45922852,
      0.19372559, 0.64599609, 0.78808594, 0.49316406, 0.62646484, 0.40649414,
      0.62744141, 0.5703125,  0.23144531, 0.50048828, 0.31835938, 0.90869141,
      0.38208008, 0.60449219, 0.09075928};

  std::vector<int> out_indices_flatten = {
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
      0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1};

  std::vector<float> out_features = {-0.25269,
                                     -0.39746,
                                     -0.45288,
                                     -0.49805,
                                     -0.5127,
                                     -0.15381,
                                     -0.00524,
                                     -0.56396,
                                     -0.17004,
                                     -0.5957,
                                     -0.17847,
                                     -0.27295};

  TestConv3d(indices_flatten,
             features,
             x_dims,
             kernel,
             kernel_dims,
             out_indices_flatten,
             out_features,
             out_dims,
             non_zero_num,
             paddings,
             strides,
             dilations);
}

TEST(DEV_API, sparse_conv2d) {
  const int in_channels = 1;
  const int out_channels = 1;
  DDim x_dims = {1, 1, 5, 5, in_channels};
  DDim kernel_dims = {1, 3, 3, in_channels, out_channels};
  DDim out_dims = {1, 1, 3, 3, out_channels};
  std::vector<int> paddings = {0, 0, 0};
  std::vector<int> strides = {1, 1, 1};
  std::vector<int> dilations = {1, 1, 1};

  const int non_zero_num = 3;
  std::vector<int> indices_flatten = {0, 0, 0, 0, 0, 0, 0, 4, 0, 3, 2, 4};

  std::vector<float> features = {-0.79394531, -0.3125, -0.55029297};
  // 3*3*3=27
  std::vector<float> kernel = {0.65820312,
                               0.75048828,
                               0.21411133,
                               0.17370605,
                               0.85546875,
                               0.53076172,
                               0.28833008,
                               0.71044922,
                               0.00659943};

  std::vector<int> out_indices_flatten = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                          0, 0, 2, 2, 2, 1, 2, 0, 1, 2};

  std::vector<float> out_features = {
      -0.17004, -0.71338, -0.00206, -0.22205, -0.09009};

  TestConv3d(indices_flatten,
             features,
             x_dims,
             kernel,
             kernel_dims,
             out_indices_flatten,
             out_features,
             out_dims,
             non_zero_num,
             paddings,
             strides,
             dilations);
}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
TEST(DEV_API, sparse_conv3d_backward) {
  const int in_channels = 1;
  const int out_channels = 1;
  DDim x_dims = {1, 4, 4, 4, in_channels};
  DDim kernel_dims = {3, 3, 3, in_channels, out_channels};
  DDim out_dims = {1, 2, 2, 2, out_channels};
  std::vector<int> paddings = {0, 0, 0};
  std::vector<int> strides = {1, 1, 1};
  std::vector<int> dilations = {1, 1, 1};

  const int non_zero_num = 2;
  std::vector<int> indices_flatten = {0, 0, 0, 2, 3, 2, 3, 2};

  std::vector<float> features = {-0.28833008, 0.0287323};
  // 3*3*3=27
  std::vector<float> kernel = {
      0.64306641, 0.45043945, 0.47216797, 0.22924805, 0.97509766, 0.86181641,
      0.57861328, 0.91796875, 0.87255859, 0.16589355, 0.44555664, 0.01889038,
      0.46459961, 0.44726562, 0.19909668, 0.89697266, 0.37158203, 0.00513077,
      0.69628906, 0.26904297, 0.74707031, 0.54003906, 0.5390625,  0.07958984,
      0.47338867, 0.90966797, 0.17126465};

  std::vector<int> out_indices_flatten = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                          0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0,
                                          1, 1, 0, 1, 0, 1, 0, 1, 0, 1};

  std::vector<float> out_features = {4.9200e-03,
                                     2.6140e-02,
                                     2.2900e-03,
                                     -2.3596e-01,
                                     1.5000e-04,
                                     1.0670e-02,
                                     5.7200e-03,
                                     1.2850e-02};

  std::vector<float> features_grad = {-0.20593, -0.09149};
  std::vector<float> kernel_grad = {
      0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,  0.000e+00,
      0.000e+00, 0.000e+00, 6.805e-02, 0.000e+00, 0.000e+00,  0.000e+00,
      0.000e+00, 3.700e-04, 1.600e-04, 0.000e+00, 3.100e-04,  0.000e+00,
      0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, -6.780e-03, 7.000e-05,
      0.000e+00, 7.500e-04, 1.400e-04};

  TestConv3d(indices_flatten,
             features,
             x_dims,
             kernel,
             kernel_dims,
             out_indices_flatten,
             out_features,
             out_dims,
             non_zero_num,
             paddings,
             strides,
             dilations,
             1e-3,
             true,
             features_grad,
             kernel_grad);
}

Z
zhangkaihuo 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
TEST(DEV_API, sparse_conv2d_subm) {
  const int in_channels = 1;
  const int out_channels = 1;
  DDim x_dims = {1, 1, 4, 5, in_channels};
  DDim kernel_dims = {1, 3, 3, in_channels, out_channels};
  DDim out_dims = {1, 1, 4, 5, out_channels};
  std::vector<int> paddings = {0, 1, 1};
  std::vector<int> strides = {1, 1, 1};
  std::vector<int> dilations = {1, 1, 1};

  const int non_zero_num = 4;
  std::vector<int> indices_flatten = {
      0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 3, 2, 2, 3};

  std::vector<float> features = {0.8854, 0.6505, -0.1999, 0.3583};
  // 3*3*3=27
  std::vector<float> kernel = {
      0.9364, 0.9460, 0.6564, 0.7999, 0.2013, 0.3812, 0.5474, 0.1016, 0.3368};

  std::vector<int> out_indices_flatten = {
      0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 3, 2, 2, 3};

  std::vector<float> out_features = {0.1782, 0.2313, 0.7117, 0.5214};

  std::vector<float> features_grad = {0.0359, 1.2080, 0.5838, 0.4541};
  std::vector<float> kernel_grad = {
      0.3391, 0.4630, 0.0000, -0.1042, 0.3528, 0.2550, 0.0000, -0.0462, 0.0829};

  TestConv3d(indices_flatten,
             features,
             x_dims,
             kernel,
             kernel_dims,
             out_indices_flatten,
             out_features,
             out_dims,
             non_zero_num,
             paddings,
             strides,
             dilations,
             1e-3,
             true,
             features_grad,
             kernel_grad,
             true);
}

TEST(DEV_API, sparse_conv3d_subm) {
  const int in_channels = 1;
  const int out_channels = 1;
  DDim x_dims = {1, 4, 4, 5, in_channels};
  DDim kernel_dims = {3, 3, 3, in_channels, out_channels};
  DDim out_dims = {1, 4, 4, 5, out_channels};
  std::vector<int> paddings = {1, 1, 1};
  std::vector<int> strides = {1, 1, 1};
  std::vector<int> dilations = {1, 1, 1};

  const int non_zero_num = 3;
  std::vector<int> indices_flatten = {0, 0, 0, 1, 3, 3, 2, 0, 2, 0, 3, 1};

  std::vector<float> features = {-0.9578, 0.1572, 0.1036};
  // 3*3*3=27
  std::vector<float> kernel = {
      0.1367, 0.4534, 0.2138, 0.8264, 0.7534, 0.3270, 0.2880, 0.1562, 0.7770,
      0.6902, 0.1981, 0.1369, 0.6582, 0.7582, 0.5640, 0.8894, 0.7350, 0.1845,
      0.6892, 0.3654, 0.6076, 0.0326, 0.8412, 0.5289, 0.9824, 0.8235, 0.9802};

  std::vector<int> out_indices_flatten = {0, 0, 0, 1, 3, 3, 2, 0, 2, 0, 3, 1};

  std::vector<float> out_features = {-0.7262, 0.1192, 0.0785};

  std::vector<float> features_grad = {-0.5506, 0.0904, 0.0595};
  std::vector<float> kernel_grad = {
      0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
      0.0000, 0.0000, 0.0000, 0.0000, 0.7224, 0.0000, 0.0000, 0.0000, 0.0000,
      0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000};

  TestConv3d(indices_flatten,
             features,
             x_dims,
             kernel,
             kernel_dims,
             out_indices_flatten,
             out_features,
             out_dims,
             non_zero_num,
             paddings,
             strides,
             dilations,
             1e-3,
             true,
             features_grad,
             kernel_grad,
             true);
}

Z
zhangkaihuo 已提交
770 771
}  // namespace tests
}  // namespace phi