sparse_utils_kernel.cc 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17 18
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
19
#include "paddle/phi/kernels/funcs/sparse/common_shape.h"
20

21
namespace phi {
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
namespace sparse {

template <typename T>
inline bool IsZero(const T* data, const size_t n) {
  const T zero = static_cast<T>(0);
  for (size_t i = 0; i < n; i++) {
    if (data[i] != zero) {
      return false;
    }
  }
  return true;
}

// TODO(zhangkaihuo): implement a kernel to count the number of non-zero
// elements in tensor
template <typename T>
inline int64_t GetNonZeroNum(const DenseTensor& dense,
                             const int64_t sparse_dim) {
  const auto& dims = dense.dims();
  PADDLE_ENFORCE_GE(
      dims.size(),
      sparse_dim,
44
      phi::errors::InvalidArgument(
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
          "sparse_dim(%d) should be less than or equal to dense.dim(%d)",
          sparse_dim,
          dims.size()));

  auto dims_2d = flatten_to_2d(dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];

  const T* data = dense.data<T>();
  int64_t non_zero_num = 0;
  for (int64_t i = 0; i < rows; i++) {
    if (!IsZero(data + i * cols, cols)) {
      non_zero_num = non_zero_num + 1;
    }
  }
  return non_zero_num;
}

template <typename T, typename Context>
void DenseToSparseCooKernel(const Context& dev_ctx,
                            const DenseTensor& x,
                            const int64_t sparse_dim,
                            SparseCooTensor* out) {
  const T* x_data = x.data<T>();
  const auto& x_dims = x.dims();

  int64_t non_zero_num = GetNonZeroNum<T>(x, sparse_dim);

  const auto place = dev_ctx.GetPlace();
74 75
  const auto values_dims =
      phi::funcs::sparse::InferDenseDims(x_dims, sparse_dim, non_zero_num);
76 77 78 79
  DenseTensorMeta indices_meta(DataType::INT64,
                               {sparse_dim, static_cast<int64_t>(non_zero_num)},
                               DataLayout::NCHW);
  DenseTensorMeta values_meta(x.meta().dtype, values_dims, x.meta().layout);
80 81
  phi::DenseTensor indices = phi::Empty(dev_ctx, std::move(indices_meta));
  phi::DenseTensor values = phi::Empty(dev_ctx, std::move(values_meta));
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  int64_t* indices_data = indices.mutable_data<int64_t>(place);
  T* values_data = values.mutable_data<T>(place);

  auto dims_2d = flatten_to_2d(x_dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];

  int index = 0;
  for (int i = 0; i < rows; i++) {
    if (!IsZero(x_data + i * cols, cols)) {
      int64_t sparse_index = i;
      for (int64_t j = sparse_dim - 1; j >= 0; j--) {
        indices_data[j * non_zero_num + index] = sparse_index % x_dims[j];
        sparse_index /= x_dims[j];
      }
      memcpy(values_data + index * cols, x_data + i * cols, cols * sizeof(T));
      ++index;
    }
  }
  out->SetMember(indices, values, x_dims, true);
}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
template <typename T, typename Context>
void SparseCsrToCooKernel(const Context& dev_ctx,
                          const SparseCsrTensor& x,
                          SparseCooTensor* out) {
  const DDim& x_dims = x.dims();
  const int64_t non_zero_num = x.non_zero_cols().numel();
  const auto& csr_crows = x.non_zero_crows();
  const auto& csr_cols = x.non_zero_cols();
  const auto& csr_values = x.non_zero_elements();
  const int64_t* csr_crows_data = csr_crows.data<int64_t>();
  const int64_t* csr_cols_data = csr_cols.data<int64_t>();
  const T* csr_values_data = csr_values.data<T>();

  int64_t sparse_dim = 2;
  if (x_dims.size() == 3) {
    sparse_dim = 3;
  }
  const auto place = dev_ctx.GetPlace();
  DenseTensorMeta indices_meta(
      DataType::INT64, {sparse_dim, non_zero_num}, DataLayout::NCHW);
  DenseTensorMeta values_meta(x.dtype(), {non_zero_num}, x.layout());
125 126
  phi::DenseTensor indices = phi::Empty(dev_ctx, std::move(indices_meta));
  phi::DenseTensor values = phi::Empty(dev_ctx, std::move(values_meta));
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  int64_t* coo_indices = indices.mutable_data<int64_t>(place);
  int64_t* batch_ptr = x_dims.size() == 2 ? nullptr : coo_indices;
  int64_t* coo_rows_data =
      x_dims.size() == 2 ? coo_indices : batch_ptr + non_zero_num;
  int64_t* coo_cols_data = coo_rows_data + non_zero_num;
  T* coo_values_data = values.mutable_data<T>(place);

  int batch = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

  int index = 0;
  for (int b = 0; b < batch; b++) {
    for (int i = 0; i < rows; i++) {
      for (int j = csr_crows_data[b * (rows + 1) + i];
           j < csr_crows_data[b * (rows + 1) + i + 1];
           j++) {
        coo_rows_data[index] = i;
        if (batch_ptr) {
          batch_ptr[index] = b;
        }
        ++index;
      }
    }
  }

  memcpy(coo_cols_data, csr_cols_data, sizeof(int64_t) * non_zero_num);
  memcpy(coo_values_data, csr_values_data, sizeof(T) * non_zero_num);
  out->SetMember(indices, values, x_dims, true);
}

157 158 159 160 161 162 163 164
template <typename T, typename Context>
void SparseCooToCsrKernel(const Context& dev_ctx,
                          const SparseCooTensor& x,
                          SparseCsrTensor* out) {
  const auto& x_dims = x.dims();
  bool valid = x_dims.size() == 2 || x_dims.size() == 3;
  PADDLE_ENFORCE_EQ(valid,
                    true,
165
                    phi::errors::InvalidArgument(
166 167 168 169 170 171 172 173 174 175 176 177
                        "SparseCsrTensor only support 2-D or 3-D matrix"));
  const int64_t non_zero_num = x.nnz();
  if (non_zero_num <= 0) return;

  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

  const auto place = dev_ctx.GetPlace();
  DenseTensorMeta crows_meta(
      DataType::INT64, {batchs * (rows + 1)}, DataLayout::NCHW);
  DenseTensorMeta cols_meta(DataType::INT64, {non_zero_num}, DataLayout::NCHW);
  DenseTensorMeta values_meta(x.dtype(), {non_zero_num}, x.layout());
178 179
  phi::DenseTensor non_zero_crows(
      phi::make_intrusive<paddle::experimental::SharedStorage>(place),
180
      std::move(crows_meta));
181 182
  phi::DenseTensor non_zero_cols(
      phi::make_intrusive<paddle::experimental::SharedStorage>(place),
183
      std::move(cols_meta));
184 185
  phi::DenseTensor non_zero_elements(
      phi::make_intrusive<paddle::experimental::SharedStorage>(place),
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
      std::move(values_meta));
  int64_t* csr_crows_data = non_zero_crows.mutable_data<int64_t>(place);
  int64_t* csr_cols_data = non_zero_cols.mutable_data<int64_t>(place);
  T* csr_values_data = non_zero_elements.mutable_data<T>(place);

  const auto& coo_indices = x.non_zero_indices();
  const auto& coo_values = x.non_zero_elements();
  const int64_t* batchs_ptr = coo_indices.data<int64_t>();
  const int64_t* coo_rows_data =
      batchs == 1 ? batchs_ptr : batchs_ptr + non_zero_num;
  const int64_t* coo_cols_data = coo_rows_data + non_zero_num;
  const T* coo_values_data = coo_values.data<T>();

  if (!x.coalesced()) {
    // TODO(zhangkahuo): call coalesced() to distinct and sort the indices
  }

  std::vector<int64_t> offsets(batchs, 0);
  if (batchs > 1) {
    for (int i = 0; i < non_zero_num; i++) {
      if (i == non_zero_num - 1 || batchs_ptr[i] != batchs_ptr[i + 1]) {
        offsets[batchs_ptr[i]] = i + 1;
      }
    }
  } else {
    offsets[0] = non_zero_num;
  }

  for (int b = 0; b < batchs; b++) {
    if (offsets[b] == 0) continue;
    int batch_start = 0;
    int batch_non_zero_num = offsets[b];
    if (b > 0) {
      batch_start = offsets[b - 1];
      batch_non_zero_num -= batch_start;
    }
    auto* coo_rows_ptr = coo_rows_data + batch_start;
    for (int i = 0; i <= coo_rows_ptr[0]; i++) {
      csr_crows_data[b * (rows + 1) + i] = 0;
    }
    for (int64_t i = 1; i < batch_non_zero_num; i++) {
      for (int j = coo_rows_ptr[i - 1]; j < coo_rows_ptr[i]; j++) {
        csr_crows_data[b * (rows + 1) + j + 1] = i;
      }
    }
    for (int64_t i = coo_rows_ptr[batch_non_zero_num - 1] + 1; i < rows + 1;
         i++) {
      csr_crows_data[b * (rows + 1) + i] = batch_non_zero_num;
    }
  }

  memcpy(csr_cols_data, coo_cols_data, sizeof(int64_t) * non_zero_num);
  memcpy(csr_values_data, coo_values_data, sizeof(T) * non_zero_num);
  out->SetMember(non_zero_crows, non_zero_cols, non_zero_elements, x_dims);
}

Z
zhangkaihuo 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
template <typename T, typename Context>
void SparseCooToDenseKernel(const Context& dev_ctx,
                            const SparseCooTensor& x,
                            DenseTensor* out) {
  const auto non_zero_num = x.nnz();
  const auto dense_dims = x.dims();
  const auto indices = x.non_zero_indices();
  const auto values = x.non_zero_elements();
  const auto indices_dims = indices.dims();
  int64_t sparse_dim = indices_dims[0];
  if (indices_dims.size() == 1) {
    sparse_dim = 1;
  }
  const int64_t dense_dim = values.dims().size() - 1;

  const auto place = dev_ctx.GetPlace();
  const T* x_data = values.data<T>();
  T* out_data = out->mutable_data<T>(place);
  int64_t base_offset = 1;
  for (int64_t i = 0; i < dense_dim; i++) {
    base_offset *= dense_dims[sparse_dim + i];
  }
  std::vector<int64_t> sparse_offsets(sparse_dim);
  int64_t offset = 1;
  for (int i = sparse_dim - 1; i >= 0; i--) {
    sparse_offsets[i] = offset;
    offset *= dense_dims[i];
  }

  memset(out_data, 0, sizeof(T) * out->numel());
  for (auto i = 0; i < non_zero_num; i++) {
    int64_t index = 0;
    for (int j = 0; j < sparse_dim; j++) {
      index +=
          indices.data<int64_t>()[j * non_zero_num + i] * sparse_offsets[j];
    }

    for (int j = 0; j < base_offset; j++) {
      out_data[index * base_offset + j] = x_data[i * base_offset + j];
    }
  }
}

285
}  // namespace sparse
286
}  // namespace phi
287

288
PD_REGISTER_KERNEL(dense_to_sparse_coo,
289 290
                   CPU,
                   ALL_LAYOUT,
291
                   phi::sparse::DenseToSparseCooKernel,
292 293 294 295 296 297 298 299
                   float,
                   double,
                   paddle::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
300

301
PD_REGISTER_KERNEL(sparse_csr_to_coo,
302 303
                   CPU,
                   ALL_LAYOUT,
304
                   phi::sparse::SparseCsrToCooKernel,
305 306 307 308 309 310 311 312
                   float,
                   double,
                   paddle::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
313

314
PD_REGISTER_KERNEL(sparse_coo_to_csr,
315 316
                   CPU,
                   ALL_LAYOUT,
317
                   phi::sparse::SparseCooToCsrKernel,
318 319
                   float,
                   double,
320
                   phi::dtype::float16,
321 322 323 324 325 326
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

327
PD_REGISTER_KERNEL(dense_to_sparse_csr,
328 329
                   CPU,
                   ALL_LAYOUT,
330
                   phi::sparse::DenseToSparseCsrKernel,
331 332
                   float,
                   double,
333
                   phi::dtype::float16,
334 335 336 337 338
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
Z
zhangkaihuo 已提交
339

340
PD_REGISTER_KERNEL(sparse_coo_to_dense,
Z
zhangkaihuo 已提交
341 342
                   CPU,
                   ALL_LAYOUT,
343
                   phi::sparse::SparseCooToDenseKernel,
Z
zhangkaihuo 已提交
344 345
                   float,
                   double,
346
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
347 348 349 350 351 352
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

353
PD_REGISTER_KERNEL(sparse_csr_to_dense,
Z
zhangkaihuo 已提交
354 355
                   CPU,
                   ALL_LAYOUT,
356
                   phi::sparse::SparseCsrToDenseKernel,
Z
zhangkaihuo 已提交
357 358
                   float,
                   double,
359
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
360 361 362 363 364
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}