test_paddle_inference_api_impl.cc 7.6 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>
#include <gtest/gtest.h>

T
tensor-tang 已提交
18 19
#include <thread>

X
Xin Pan 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "gflags/gflags.h"
#include "paddle/contrib/inference/paddle_inference_api_impl.h"
#include "paddle/fluid/inference/tests/test_helper.h"

DEFINE_string(dirname, "", "Directory of the inference model.");

namespace paddle {

PaddleTensor LodTensorToPaddleTensor(framework::LoDTensor* t) {
  PaddleTensor pt;
  pt.data.data = t->data<void>();

  if (t->type() == typeid(int64_t)) {
    pt.data.length = t->numel() * sizeof(int64_t);
    pt.dtype = PaddleDType::INT64;
  } else if (t->type() == typeid(float)) {
    pt.data.length = t->numel() * sizeof(float);
    pt.dtype = PaddleDType::FLOAT32;
  } else {
    LOG(FATAL) << "unsupported type.";
  }
  pt.shape = framework::vectorize2int(t->dims());
  return pt;
}

Y
Yan Chunwei 已提交
45 46
NativeConfig GetConfig() {
  NativeConfig config;
X
Xin Pan 已提交
47 48
  config.model_dir = FLAGS_dirname + "word2vec.inference.model";
  LOG(INFO) << "dirname  " << config.model_dir;
X
Xin Pan 已提交
49
  config.fraction_of_gpu_memory = 0.15;
T
tensor-tang 已提交
50
#ifdef PADDLE_WITH_CUDA
Y
Yan Chunwei 已提交
51
  config.use_gpu = true;
T
tensor-tang 已提交
52 53 54
#else
  config.use_gpu = false;
#endif
X
Xin Pan 已提交
55
  config.device = 0;
56 57
  return config;
}
X
Xin Pan 已提交
58

59
TEST(paddle_inference_api_impl, word2vec) {
Y
Yan Chunwei 已提交
60 61
  NativeConfig config = GetConfig();
  auto predictor = CreatePaddlePredictor<NativeConfig>(config);
X
Xin Pan 已提交
62 63 64 65 66 67 68 69 70 71

  framework::LoDTensor first_word, second_word, third_word, fourth_word;
  framework::LoD lod{{0, 1}};
  int64_t dict_size = 2073;  // The size of dictionary

  SetupLoDTensor(&first_word, lod, static_cast<int64_t>(0), dict_size - 1);
  SetupLoDTensor(&second_word, lod, static_cast<int64_t>(0), dict_size - 1);
  SetupLoDTensor(&third_word, lod, static_cast<int64_t>(0), dict_size - 1);
  SetupLoDTensor(&fourth_word, lod, static_cast<int64_t>(0), dict_size - 1);

72 73 74 75 76 77 78 79 80 81 82
  std::vector<PaddleTensor> paddle_tensor_feeds;
  paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&first_word));
  paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&second_word));
  paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&third_word));
  paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&fourth_word));

  std::vector<PaddleTensor> outputs;
  ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
  ASSERT_EQ(outputs.size(), 1UL);
  size_t len = outputs[0].data.length;
  float* data = static_cast<float*>(outputs[0].data.data);
83
  for (size_t j = 0; j < len / sizeof(float); ++j) {
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    ASSERT_LT(data[j], 1.0);
    ASSERT_GT(data[j], -1.0);
  }

  std::vector<paddle::framework::LoDTensor*> cpu_feeds;
  cpu_feeds.push_back(&first_word);
  cpu_feeds.push_back(&second_word);
  cpu_feeds.push_back(&third_word);
  cpu_feeds.push_back(&fourth_word);

  framework::LoDTensor output1;
  std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
  cpu_fetchs1.push_back(&output1);

  TestInference<platform::CPUPlace>(config.model_dir, cpu_feeds, cpu_fetchs1);

  float* lod_data = output1.data<float>();
101
  for (int i = 0; i < output1.numel(); ++i) {
102 103 104 105 106 107 108 109 110 111 112
    EXPECT_LT(lod_data[i] - data[i], 1e-3);
    EXPECT_GT(lod_data[i] - data[i], -1e-3);
  }

  free(outputs[0].data.data);
}

TEST(paddle_inference_api_impl, image_classification) {
  int batch_size = 2;
  bool use_mkldnn = false;
  bool repeat = false;
Y
Yan Chunwei 已提交
113
  NativeConfig config = GetConfig();
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  config.model_dir =
      FLAGS_dirname + "image_classification_resnet.inference.model";

  const bool is_combined = false;
  std::vector<std::vector<int64_t>> feed_target_shapes =
      GetFeedTargetShapes(config.model_dir, is_combined);

  framework::LoDTensor input;
  // Use normilized image pixels as input data,
  // which should be in the range [0.0, 1.0].
  feed_target_shapes[0][0] = batch_size;
  framework::DDim input_dims = framework::make_ddim(feed_target_shapes[0]);
  SetupTensor<float>(
      &input, input_dims, static_cast<float>(0), static_cast<float>(1));
  std::vector<framework::LoDTensor*> cpu_feeds;
  cpu_feeds.push_back(&input);

  framework::LoDTensor output1;
  std::vector<framework::LoDTensor*> cpu_fetchs1;
  cpu_fetchs1.push_back(&output1);

  TestInference<platform::CPUPlace, false, true>(config.model_dir,
                                                 cpu_feeds,
                                                 cpu_fetchs1,
                                                 repeat,
                                                 is_combined,
                                                 use_mkldnn);

Y
Yan Chunwei 已提交
142
  auto predictor = CreatePaddlePredictor(config);
143 144
  std::vector<PaddleTensor> paddle_tensor_feeds;
  paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&input));
X
Xin Pan 已提交
145 146

  std::vector<PaddleTensor> outputs;
147
  ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
148
  ASSERT_EQ(outputs.size(), 1UL);
149 150 151 152
  size_t len = outputs[0].data.length;
  float* data = static_cast<float*>(outputs[0].data.data);
  float* lod_data = output1.data<float>();
  for (size_t j = 0; j < len / sizeof(float); ++j) {
X
clean  
Xin Pan 已提交
153
    EXPECT_NEAR(lod_data[j], data[j], 1e-3);
X
Xin Pan 已提交
154
  }
155
  free(data);
X
Xin Pan 已提交
156 157
}

T
tensor-tang 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
TEST(paddle_inference_api_native_multithreads, word2vec) {
  NativeConfig config = GetConfig();
  config.use_gpu = false;
  auto main_predictor = CreatePaddlePredictor<NativeConfig>(config);

  // prepare inputs data
  constexpr int num_jobs = 3;
  std::vector<std::vector<framework::LoDTensor>> jobs(num_jobs);
  std::vector<std::vector<PaddleTensor>> paddle_tensor_feeds(num_jobs);
  std::vector<framework::LoDTensor> refs(num_jobs);
  for (size_t i = 0; i < jobs.size(); ++i) {
    // each job has 4 words
    jobs[i].resize(4);
    for (size_t j = 0; j < 4; ++j) {
      framework::LoD lod{{0, 1}};
      int64_t dict_size = 2073;  // The size of dictionary
      SetupLoDTensor(&jobs[i][j], lod, static_cast<int64_t>(0), dict_size - 1);
      paddle_tensor_feeds[i].push_back(LodTensorToPaddleTensor(&jobs[i][j]));
    }

    // get reference result of each job
    std::vector<paddle::framework::LoDTensor*> ref_feeds;
    std::vector<paddle::framework::LoDTensor*> ref_fetches(1, &refs[i]);
    for (auto& word : jobs[i]) {
      ref_feeds.push_back(&word);
    }
    TestInference<platform::CPUPlace>(config.model_dir, ref_feeds, ref_fetches);
  }

  // create threads and each thread run 1 job
  std::vector<std::thread> threads;
  for (int tid = 0; tid < num_jobs; ++tid) {
    threads.emplace_back([&, tid]() {
      auto predictor = main_predictor->Clone();
      auto& local_inputs = paddle_tensor_feeds[tid];
      std::vector<PaddleTensor> local_outputs;
      ASSERT_TRUE(predictor->Run(local_inputs, &local_outputs));

      // check outputs range
      ASSERT_EQ(local_outputs.size(), 1UL);
      const size_t len = local_outputs[0].data.length;
      float* data = static_cast<float*>(local_outputs[0].data.data);
      for (size_t j = 0; j < len / sizeof(float); ++j) {
        ASSERT_LT(data[j], 1.0);
        ASSERT_GT(data[j], -1.0);
      }

      // check outputs correctness
      float* ref_data = refs[tid].data<float>();
      EXPECT_EQ(refs[tid].numel(), len / sizeof(float));
      for (int i = 0; i < refs[tid].numel(); ++i) {
        EXPECT_LT(ref_data[i] - data[i], 1e-3);
        EXPECT_GT(ref_data[i] - data[i], -1e-3);
      }

      free(local_outputs[0].data.data);
    });
  }
  for (int i = 0; i < num_jobs; ++i) {
    threads[i].join();
  }
}

X
Xin Pan 已提交
221
}  // namespace paddle