linspace_op.cu 2.6 KB
Newer Older
Z
zhoukunsheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/linspace_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

#define CUDA_1D_KERNEL_LOOP(i, n)                              \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
       i += blockDim.x * gridDim.x)

template <typename T>
__global__ void LinspaceKernel(T start, T step, int64_t size, T* out) {
  CUDA_1D_KERNEL_LOOP(index, size) { out[index] = start + step * index; }
}

template <typename T>
__global__ void LinspaceSpecialKernel(T start, T* out) {
  out[0] = start;
}

template <typename T>
class CUDALinspaceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* start_t = context.Input<framework::Tensor>("Start");
    auto* stop_t = context.Input<framework::Tensor>("Stop");
    auto* num_t = context.Input<framework::Tensor>("Num");
    auto* out = context.Output<framework::Tensor>("Out");

    framework::Tensor n;
    framework::TensorCopy(*start_t, platform::CPUPlace(), &n);
    T start = n.data<T>()[0];
    framework::TensorCopy(*stop_t, platform::CPUPlace(), &n);
    T stop = n.data<T>()[0];
    framework::TensorCopy(*num_t, platform::CPUPlace(), &n);
    int32_t num = n.data<int32_t>()[0];

    PADDLE_ENFORCE(num > 0, "The num of linspace op should be larger than 0.");

    out->Resize(framework::make_ddim({num}));
    T* out_data = out->mutable_data<T>(context.GetPlace());

    T step = 0;
    if (num != 1) {
      step = (stop - start) / (num - 1);
    }

    auto stream = context.cuda_device_context().stream();
    int block = 512;
    int grid = (num + block - 1) / block;
    LinspaceKernel<T><<<grid, block, 0, stream>>>(start, step, num, out_data);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(linspace, ops::CUDALinspaceKernel<float>,
                        ops::CUDALinspaceKernel<double>);