lrn_op.cu 6.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lrn_op.h"
G
gongweibao 已提交
16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
namespace paddle {
namespace operators {

template <typename T>
__global__ void KeCMRNormFillScale(int img_size, const T* in, T* mid, int C,
                                   int H, int W, int size, T k, T alpha) {
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < img_size) {
    const int w = idx % W;
    const int h = (idx / W) % H;
    const int n = idx / W / H;
    const int offset = (n * C * H + h) * W + w;

    in += offset;
    mid += offset;
    const int step = H * W;
    const int pre_pad = (size - 1) / 2;
    const int post_pad = size - pre_pad - 1;

    T accum = 0;
    int index = 0;
    while (index < C + post_pad) {
      if (index < C) {
        T val = in[index * step];
        accum += val * val;
      }
      if (index >= size) {
        T val = in[(index - size) * step];
        accum -= val * val;
      }
      if (index >= post_pad) {
        mid[(index - post_pad) * step] = k + accum * alpha;
      }
      ++index;
    }
  }
}

template <typename T>
__global__ void KeCMRNormOutput(int input_size, const T* in, const T* mid,
                                T negative_beta, T* out) {
  const int index = threadIdx.x + blockIdx.x * blockDim.x;
  if (index < input_size) {
    out[index] = in[index] * pow(mid[index], negative_beta);
  }
}

template <typename T>
void CrossMapNormal(const framework::ExecutionContext& ctx, const T* inputs,
                    T* outputs, T* mid, int N, int C, int H, int W, int n, T k,
                    T alpha, T beta) {
  int img_size = N * H * W;
  const int block_size = 1024;
  int grid_size = (img_size + block_size - 1) / block_size;

Q
QI JUN 已提交
72 73
  auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
  KeCMRNormFillScale<T><<<grid_size, block_size, 0, dev_ctx.stream()>>>(
74 75 76 77
      img_size, inputs, mid, C, H, W, n, k, alpha);

  int input_size = N * H * W * C;
  grid_size = (input_size + block_size - 1) / block_size;
Q
QI JUN 已提交
78
  KeCMRNormOutput<T><<<grid_size, block_size, 0, dev_ctx.stream()>>>(
79 80 81 82
      input_size, inputs, mid, -beta, outputs);
}

template <typename T>
Q
QI JUN 已提交
83
struct LRNFunctor<platform::CUDADeviceContext, T> {
84 85 86 87 88 89 90 91 92 93
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& input, framework::Tensor* out,
                  framework::Tensor* mid, int N, int C, int H, int W, int n,
                  T k, T alpha, T beta) {
    CrossMapNormal<T>(
        ctx, input.data<T>(), out->mutable_data<T>(ctx.GetPlace()),
        mid->mutable_data<T>(ctx.GetPlace()), N, C, H, W, n, k, alpha, beta);
  }
};

Q
QI JUN 已提交
94 95
template struct LRNFunctor<platform::CUDADeviceContext, float>;
template struct LRNFunctor<platform::CUDADeviceContext, double>;
G
gongweibao 已提交
96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
template <typename T>
__global__ void KeCMRNormDiff(int img_size, const T* x, const T* out,
                              const T* mid, T* x_g, const T* out_g, int C,
                              int H, int W, int size, T negative_beta,
                              T ratio) {
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < img_size) {
    const int w = idx % W;
    const int h = (idx / W) % H;
    const int n = idx / W / H;
    const int offset = (n * C * H + h) * W + w;
    x += offset;
    out += offset;
    mid += offset;
    out_g += offset;
    x_g += offset;

    const int step = H * W;
    const int pre_pad = size - (size + 1) / 2;
    const int post_pad = size - pre_pad - 1;

    int index = 0;
    T accum = 0;
    // TODO(gongwb): optimize this with thread shared array.
    while (index < C + post_pad) {
      if (index < C) {
        x_g[index * step] = 0.0;
        accum += out_g[index * step] * out[index * step] / mid[index * step];
      }
      if (index >= size) {
        accum -= out_g[(index - size) * step] * out[(index - size) * step] /
                 mid[(index - size) * step];
      }
      if (index >= post_pad) {
        x_g[(index - post_pad) * step] +=
            out_g[(index - post_pad) * step] *
                pow(mid[(index - post_pad) * step], negative_beta) -
            ratio * x[(index - post_pad) * step] * accum;
      }
      ++index;
    }
  }
}

template <typename T>
void CrossMapNormalGrad(const framework::ExecutionContext& ctx, const T* x,
                        const T* out, const T* mid, T* x_g, const T* out_g,
                        int N, int C, int H, int W, int n, T alpha, T beta) {
  int img_size = N * H * W;

  const int block_size = 1024;
  int grid_size = (img_size + block_size - 1) / block_size;

Q
QI JUN 已提交
150 151
  auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
  KeCMRNormDiff<T><<<grid_size, block_size, 0, dev_ctx.stream()>>>(
152 153 154 155 156
      img_size, x, out, mid, x_g, out_g, C, H, W, n, -beta,
      2.0f * alpha * beta);
}

template <typename T>
Q
QI JUN 已提交
157
struct LRNGradFunctor<platform::CUDADeviceContext, T> {
158 159 160 161 162 163 164 165 166 167 168
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& x, const framework::Tensor& out,
                  const framework::Tensor& mid, framework::Tensor* x_g,
                  const framework::Tensor& out_g, int N, int C, int H, int W,
                  int n, T alpha, T beta) {
    CrossMapNormalGrad<T>(ctx, x.data<T>(), out.data<T>(), mid.data<T>(),
                          x_g->mutable_data<T>(ctx.GetPlace()), out_g.data<T>(),
                          N, C, H, W, n, alpha, beta);
  }
};

Q
QI JUN 已提交
169 170
template struct LRNGradFunctor<platform::CUDADeviceContext, float>;
template struct LRNGradFunctor<platform::CUDADeviceContext, double>;
171 172 173 174
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Q
QI JUN 已提交
175 176 177 178
REGISTER_OP_CUDA_KERNEL(
    lrn, ops::LRNKernel<paddle::platform::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
    lrn_grad, ops::LRNGradKernel<paddle::platform::CUDADeviceContext, float>);