log_loss_op.h 2.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
K
kavyasrinet 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
K
kavyasrinet 已提交
18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

Q
QI JUN 已提交
27
template <typename DeviceContext, typename T, typename AttrType = T>
K
kavyasrinet 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40
class LogLossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* loss_out = ctx.Output<Tensor>("Loss");

    loss_out->mutable_data<T>(ctx.GetPlace());

    auto epsilon = static_cast<T>(ctx.Attr<AttrType>("epsilon"));

    auto prediction = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Predicted"));
    auto label = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Labels"));

    auto loss = EigenVector<T>::Flatten(*loss_out);
Q
QI JUN 已提交
41
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
K
kavyasrinet 已提交
42 43 44 45 46 47 48

    loss.device(place) = (-(label * (prediction + epsilon).log()) -
                          ((static_cast<T>(1) - label) *
                           (static_cast<T>(1) - prediction + epsilon).log()));
  }
};

Q
QI JUN 已提交
49
template <typename DeviceContext, typename T, typename AttrType = T>
K
kavyasrinet 已提交
50 51 52 53 54 55 56 57 58 59 60 61
class LogLossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto epsilon = static_cast<T>(ctx.Attr<AttrType>("epsilon"));

    auto prediction = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Predicted"));
    auto label = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Labels"));

    auto* dloss = ctx.Input<Tensor>(framework::GradVarName("Loss"));
    auto* dpred = ctx.Output<Tensor>(framework::GradVarName("Predicted"));

    auto dl = EigenVector<T>::Flatten(*dloss);
Q
QI JUN 已提交
62
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
K
kavyasrinet 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75

    if (dpred) {
      dpred->mutable_data<T>(ctx.GetPlace());
      auto dx = framework::EigenVector<T>::Flatten(*dpred);
      dx.device(place) = dl * (-(label / (prediction + epsilon)) +
                               ((static_cast<T>(1) - label) /
                                (static_cast<T>(1) - prediction + epsilon)));
    }
  }
};

}  // namespace operators
}  // namespace paddle