conditional_block_op.cc 8.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14
#include <algorithm>
Y
Yi Wang 已提交
15 16
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

namespace paddle {
namespace operators {

class ConditionalOp : public framework::OperatorBase {
 public:
  ConditionalOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

 protected:
  std::vector<const framework::LoDTensor *> InputTensors(
      const framework::Scope &scope) const {
    std::vector<const framework::LoDTensor *> retv;
    auto xs = Inputs("X");
    retv.resize(xs.size(), nullptr);
    std::transform(
        xs.begin(), xs.end(), retv.begin(),
        [&scope](const std::string &var_name) -> const framework::LoDTensor * {
          auto *var = scope.FindVar(var_name);
          PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", var_name);
          return &var->Get<framework::LoDTensor>();
        });
    return retv;
  }
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

  bool ScalarCondition(
      const std::vector<const framework::LoDTensor *> &ips) const {
    if (!(ips.size() == 1UL && ips[0]->IsInitialized())) {
      PADDLE_THROW("should have one initialized input as condition");
    }
    if (!(ips[0]->type().hash_code() == typeid(bool).hash_code() &&
          ips[0]->numel() == 1)) {
      PADDLE_THROW(
          "condition input's data type should be bool, "
          "numel should be 1, actual numel is %d",
          ips[0]->numel());
    }
    return ips[0]->data<bool>()[0];
  }
Y
Yu Yang 已提交
59 60 61 62 63 64 65 66 67
};

class ConditionalBlockOp : public ConditionalOp {
 public:
  ConditionalBlockOp(const std::string &type,
                     const framework::VariableNameMap &inputs,
                     const framework::VariableNameMap &outputs,
                     const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
68 69 70 71

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
Y
Yu Yang 已提交
72
    auto xs = InputTensors(scope);
73 74 75 76 77 78 79 80 81

    bool need_run;
    if (Attr<bool>("is_scalar_condition")) {
      need_run = ScalarCondition(xs);
    } else {
      need_run = std::all_of(
          xs.begin(), xs.end(),
          [](const framework::LoDTensor *t) { return t->numel() != 0; });
    }
Y
Yu Yang 已提交
82 83 84 85 86 87 88 89 90

    if (need_run) {
      auto *scope_var = scope.FindVar(Output("Scope"));
      PADDLE_ENFORCE(scope_var != nullptr, "Must set scope");
      auto *scopes = scope_var->GetMutable<std::vector<framework::Scope *>>();
      scopes->resize(1);
      scopes->front() = &scope.NewScope();
      auto &cur_scope = *scopes->front();

D
dzhwinter 已提交
91
      framework::Executor exec(dev_place);
Y
Yu Yang 已提交
92
      auto *block = Attr<framework::BlockDesc *>("sub_block");
Y
Yu Yang 已提交
93 94 95 96 97 98 99
      exec.Run(*block->Program(), &cur_scope, block->ID(), false);
    }
  }
};

class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
100
  ConditionalBlockOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
101 102 103 104 105 106 107 108 109 110 111
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X",
             "The conditional variable of this operator. If X is empty, the "
             "whole sub-block will not be executed.")
        .AsDuplicable();
    AddInput("Params", "The input variables of the sub-block.").AsDuplicable();
    AddOutput("Out", "The output variables of the sub-block.").AsDuplicable();
    AddOutput("Scope",
              "(std::vector<Scope*>) The step scope of conditional block. To "
              "unify the conditional block, rnn and while op, the type of "
              "scope is std::vector<Scope*>");
Y
Yu Yang 已提交
112
    AddAttr<framework::BlockDesc *>(
113
        "sub_block", "The step block of conditional block operator");
114 115 116 117
    AddAttr<bool>("is_scalar_condition",
                  "the input X is used as scalar "
                  "condition")
        .SetDefault(false);
Y
Yu Yang 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    AddComment(R"DOC(Conditional block operator

Run the sub-block if X is not empty. Params is the other inputs and Out is the
outputs of the sub-block.
)DOC");
  }
};

class ConditionalBlockGradOp : public ConditionalOp {
 public:
  ConditionalBlockGradOp(const std::string &type,
                         const framework::VariableNameMap &inputs,
                         const framework::VariableNameMap &outputs,
                         const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
133 134 135 136

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
Y
Yu Yang 已提交
137
    auto xs = this->InputTensors(scope);
138 139 140 141 142 143 144 145 146

    bool need_run;
    if (Attr<bool>("is_scalar_condition")) {
      need_run = ScalarCondition(xs);
    } else {
      need_run = std::all_of(
          xs.begin(), xs.end(),
          [](const framework::LoDTensor *t) { return t->numel() != 0; });
    }
Y
Yu Yang 已提交
147 148 149 150 151 152 153

    if (need_run) {
      auto *scope_var = scope.FindVar(Input("Scope"));
      PADDLE_ENFORCE(scope_var != nullptr, "Must set scope");
      auto &scopes = scope_var->Get<std::vector<framework::Scope *>>();
      framework::Scope &cur_scope = *scopes[0];

D
dzhwinter 已提交
154
      framework::Executor exec(dev_place);
Y
Yu Yang 已提交
155
      auto *block = Attr<framework::BlockDesc *>("sub_block");
Y
Yu Yang 已提交
156 157
      exec.Run(*block->Program(), &cur_scope, block->ID(), false);

D
dzhwinter 已提交
158
      AssignLocalGradientToGlobal(dev_place, cur_scope, Inputs("Params"),
Y
Yu Yang 已提交
159 160
                                  Outputs(framework::GradVarName("Params")));

D
dzhwinter 已提交
161
      AssignLocalGradientToGlobal(dev_place, cur_scope, Inputs("X"),
Y
Yu Yang 已提交
162 163 164 165 166 167
                                  Outputs(framework::GradVarName("X")));
    }
  }

 private:
  void AssignLocalGradientToGlobal(
D
dzhwinter 已提交
168
      const platform::Place &place, const framework::Scope &cur_scope,
Y
Yu Yang 已提交
169 170 171 172 173 174 175 176 177 178
      const std::vector<std::string> &p_names,
      const std::vector<std::string> &pg_names) const {
    for (size_t i = 0; i < p_names.size(); ++i) {
      auto out_grad_name = pg_names[i];
      auto in_grad_name = framework::GradVarName(p_names[i]);
      auto *in_var = cur_scope.FindVar(in_grad_name);
      if (in_var == nullptr) {
        continue;
      }
      auto new_in_grad_name = cur_scope.Rename(in_grad_name);
Y
Yiqun Liu 已提交
179 180 181
      auto assign = framework::OpRegistry::CreateOp(
          "assign", {{"X", {new_in_grad_name}}}, {{"Out", {out_grad_name}}},
          framework::AttributeMap{});
D
dzhwinter 已提交
182
      assign->Run(cur_scope, place);
Y
Yu Yang 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
      cur_scope.Rename(new_in_grad_name, in_grad_name);
    }
  }
};

class ConditionalBlockGradInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInputs("X"));
    if (context->HasInputs("Params")) {
      PADDLE_ENFORCE(context->HasOutputs(framework::GradVarName("Params")));
      context->SetOutputsDim(framework::GradVarName("Params"),
                             context->GetInputsDim("Params"));
    }
    PADDLE_ENFORCE(context->HasOutputs(framework::GradVarName("X")));
    context->SetOutputsDim(framework::GradVarName("X"),
                           context->GetInputsDim("X"));
  }
};

class ConditionalBlockGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
208 209
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
210 211 212 213 214 215
    grad_op->SetType("conditional_block_grad");
    grad_op->SetInput("X", Input("X"));
    grad_op->SetInput("Params", Input("Params"));
    grad_op->SetInput("Out", Output("Out"));
    grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetInput("Scope", Output("Scope"));
216 217 218
    grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X", false));
    grad_op->SetOutput(framework::GradVarName("Params"),
                       InputGrad("Params", false));
219
    grad_op->SetBlockAttr("sub_block", *this->grad_block_[0]);
220
    grad_op->SetAttr("is_scalar_condition", GetAttr("is_scalar_condition"));
Y
Yu Yang 已提交
221
    return std::unique_ptr<framework::OpDesc>(grad_op);
Y
Yu Yang 已提交
222 223 224 225 226 227 228 229 230 231 232 233
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(conditional_block, ops::ConditionalBlockOp,
                  ops::ConditionalBlockOpProtoMaker,
                  ops::ConditionalBlockGradMaker);
REGISTER_OPERATOR(conditional_block_grad, ops::ConditionalBlockGradOp,
                  ops::ConditionalBlockGradInferShape);