test_lstm_cudnn_op.py 18.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
16 17
import random
import unittest
18

19
import numpy as np
20
from op_test import OpTest
21

22 23
import paddle
import paddle.fluid as fluid
24
import paddle.fluid.core as core
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
import paddle.fluid.layers as layers

random.seed(2)
np.set_printoptions(threshold=np.inf)
paddle.enable_static()

SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0


class RandomWeight:
    def __init__(self):
        pass

    def updata_weight(self, hidden_size, input_size, dtype):
        std = 1.0 / math.sqrt(hidden_size)
        self.hidden_size = hidden_size
        self.input_size = input_size
        self.dtype = dtype

46 47 48
        self.weight_ih = np.random.uniform(
            low=-std, high=std, size=(4 * self.hidden_size, self.input_size)
        ).astype(dtype)
49
        self.weight_hh = np.random.uniform(
50 51 52 53 54 55 56 57
            low=-std, high=std, size=(4 * self.hidden_size, self.hidden_size)
        ).astype(dtype)
        self.bias_ih = np.random.uniform(
            low=-std, high=std, size=(4 * self.hidden_size)
        ).astype(dtype)
        self.bias_hh = np.random.uniform(
            low=-std, high=std, size=(4 * self.hidden_size)
        ).astype(dtype)
58 59 60 61 62


weight = RandomWeight()


63
class LayerMixin:
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    def __call__(self, *args, **kwargs):
        return self.forward(*args, **kwargs)


class LayerListMixin(LayerMixin):
    def __init__(self, layers=None):
        self._layers = list(layers) if layers else []

    def append(self, layer):
        self._layers.append(layer)

    def __iter__(self):
        return iter(self._layers)


class LSTMCell(LayerMixin):
    def __init__(self, input_size, hidden_size, bias=True):
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.bias = bias
        self.dtype = np.float64
        self.parameters = dict()
        self.weight_ih = weight.weight_ih
        self.weight_hh = weight.weight_hh
        self.parameters['weight_ih'] = self.weight_ih
        self.parameters['weight_hh'] = self.weight_hh
        if bias:
            self.bias_ih = weight.bias_ih
            self.bias_hh = weight.bias_hh
            self.parameters['bias_ih'] = self.bias_ih
            self.parameters['bias_hh'] = self.bias_hh
        else:
            self.bias_ih = None
            self.bias_hh = None

    def init_state(self, inputs):
        batch_size = inputs.shape[0]
        init_h = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype)
        init_c = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype)
        return init_h, init_c

    def forward(self, inputs, hx=None):
        if hx is None:
            hx = self.init_state(inputs)
        pre_hidden, pre_cell = hx
        gates = np.matmul(inputs, self.weight_ih.T)
        if self.bias_ih is not None:
            gates = gates + self.bias_ih
        gates += np.matmul(pre_hidden, self.weight_hh.T)
        if self.bias_hh is not None:
            gates = gates + self.bias_hh

        chunked_gates = np.split(gates, 4, -1)

        i = 1.0 / (1.0 + np.exp(-chunked_gates[0]))
        f = 1.0 / (1.0 + np.exp(-chunked_gates[1]))
        o = 1.0 / (1.0 + np.exp(-chunked_gates[3]))
        c = f * pre_cell + i * np.tanh(chunked_gates[2])
        h = o * np.tanh(c)

        return h, (h, c)


def sequence_mask(lengths, max_len=None):
    if max_len is None:
        max_len = np.max(lengths)
    else:
        assert max_len >= np.max(lengths)
    return np.arange(max_len) < np.expand_dims(lengths, -1)


def update_state(mask, new, old):
    if not isinstance(old, (tuple, list)):
        return np.where(mask, new, old)
    else:
        return tuple(map(lambda x, y: np.where(mask, x, y), new, old))


142 143 144 145 146 147 148 149
def rnn(
    cell,
    inputs,
    initial_states,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
):
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    if not time_major:
        inputs = np.transpose(inputs, [1, 0, 2])
    if is_reverse:
        inputs = np.flip(inputs, 0)

    if sequence_length is None:
        mask = None
    else:
        mask = np.transpose(sequence_mask(sequence_length), [1, 0])
        mask = np.expand_dims(mask, -1)
        if is_reverse:
            mask = np.flip(mask, 0)

    time_steps = inputs.shape[0]
    state = initial_states
    outputs = []
    for t in range(time_steps):
        x_t = inputs[t]
        if mask is not None:
            m_t = mask[t]
            y, new_state = cell(x_t, state)
171
            y = np.where(m_t, y, 0.0)
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
            outputs.append(y)
            state = update_state(m_t, new_state, state)
        else:
            y, new_state = cell(x_t, state)
            outputs.append(y)
            state = new_state

    outputs = np.stack(outputs)
    final_state = state

    if is_reverse:
        outputs = np.flip(outputs, 0)
    if not time_major:
        outputs = np.transpose(outputs, [1, 0, 2])
    return outputs, final_state


189 190 191 192 193 194 195 196
def birnn(
    cell_fw,
    cell_bw,
    inputs,
    initial_states,
    sequence_length=None,
    time_major=False,
):
197
    states_fw, states_bw = initial_states
198 199 200 201 202 203 204 205 206 207 208 209
    outputs_fw, states_fw = rnn(
        cell_fw, inputs, states_fw, sequence_length, time_major=time_major
    )

    outputs_bw, states_bw = rnn(
        cell_bw,
        inputs,
        states_bw,
        sequence_length,
        time_major=time_major,
        is_reverse=True,
    )
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

    outputs = np.concatenate((outputs_fw, outputs_bw), -1)
    final_states = (states_fw, states_bw)
    return outputs, final_states


def flatten(nested):
    return list(_flatten(nested))


def _flatten(nested):
    for item in nested:
        if isinstance(item, (list, tuple)):
            for subitem in _flatten(item):
                yield subitem
        else:
            yield item


def unstack(array, axis=0):
    num = array.shape[axis]
    sub_arrays = np.split(array, num, axis)
    return [np.squeeze(sub_array, axis) for sub_array in sub_arrays]


def dropout(array, p=0.0):
    if p == 0.0:
        return array

    mask = (np.random.uniform(size=array.shape) < (1 - p)).astype(array.dtype)
    return array * (mask / (1 - p))


def split_states(states, bidirectional=False, state_components=1):
    if state_components == 1:
        states = unstack(states)
        if not bidirectional:
            return states
        else:
            return list(zip(states[::2], states[1::2]))
    else:
        assert len(states) == state_components
        states = tuple([unstack(item) for item in states])
        if not bidirectional:
            return list(zip(*states))
        else:
            states = list(zip(*states))
            return list(zip(states[::2], states[1::2]))


def concat_states(states, bidirectional=False, state_components=1):
    if state_components == 1:
        return np.stack(flatten(states))
    else:
        states = flatten(states)
        componnets = []
        for i in range(state_components):
            componnets.append(states[i::state_components])
        return [np.stack(item) for item in componnets]


class RNN(LayerMixin):
    def __init__(self, cell, is_reverse=False, time_major=False):
273
        super().__init__()
274 275 276 277 278 279 280 281
        self.cell = cell
        if not hasattr(self.cell, "call"):
            # for non-dygraph mode, `rnn` api uses cell.call
            self.cell.call = self.cell.forward
        self.is_reverse = is_reverse
        self.time_major = time_major

    def forward(self, inputs, initial_states=None, sequence_length=None):
282 283 284 285 286 287 288 289
        final_outputs, final_states = rnn(
            self.cell,
            inputs,
            initial_states=initial_states,
            sequence_length=sequence_length,
            time_major=self.time_major,
            is_reverse=self.is_reverse,
        )
290 291 292 293 294
        return final_outputs, final_states


class BiRNN(LayerMixin):
    def __init__(self, cell_fw, cell_bw, time_major=False):
295
        super().__init__()
296 297 298 299
        self.cell_fw = cell_fw
        self.cell_bw = cell_bw
        self.time_major = time_major

300 301 302
    def forward(
        self, inputs, initial_states=None, sequence_length=None, **kwargs
    ):
303
        if isinstance(initial_states, (list, tuple)):
304 305 306
            assert (
                len(initial_states) == 2
            ), "length of initial_states should be 2 when it is a list/tuple"
307 308 309
        else:
            initial_states = [initial_states, initial_states]

310 311 312 313 314 315 316 317
        outputs, final_states = birnn(
            self.cell_fw,
            self.cell_bw,
            inputs,
            initial_states,
            sequence_length,
            self.time_major,
        )
318 319 320 321 322 323 324 325 326
        return outputs, final_states


class RNNMixin(LayerListMixin):
    def forward(self, inputs, initial_states=None, sequence_length=None):
        batch_index = 1 if self.time_major else 0
        batch_size = inputs.shape[batch_index]
        dtype = inputs.dtype
        if initial_states is None:
327 328 329 330 331
            state_shape = (
                self.num_layers * self.num_directions,
                batch_size,
                self.hidden_size,
            )
332 333 334
            if self.state_components == 1:
                initial_states = np.zeros(state_shape, dtype)
            else:
335 336 337 338 339 340 341 342 343 344
                initial_states = tuple(
                    [
                        np.zeros(state_shape, dtype)
                        for _ in range(self.state_components)
                    ]
                )

        states = split_states(
            initial_states, self.num_directions == 2, self.state_components
        )
345 346 347 348 349 350 351 352 353
        final_states = []

        for i, rnn_layer in enumerate(self):
            if i > 0:
                inputs = dropout(inputs, self.dropout)
            outputs, final_state = rnn_layer(inputs, states[i], sequence_length)
            final_states.append(final_state)
            inputs = outputs

354 355 356
        final_states = concat_states(
            final_states, self.num_directions == 2, self.state_components
        )
357 358 359 360
        return outputs, final_states


class LSTM(RNNMixin):
361 362 363 364 365 366 367 368 369
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        dropout=0.0,
        time_major=False,
    ):
370
        super().__init__()
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

        if direction in ["forward", "backward"]:
            is_reverse = direction == "backward"
            cell = LSTMCell(input_size, hidden_size)
            self.append(RNN(cell, is_reverse, time_major))
            for i in range(1, num_layers):
                cell = LSTMCell(hidden_size, hidden_size)
                self.append(RNN(cell, is_reverse, time_major))
        elif direction == "bidirectional":
            cell_fw = LSTMCell(input_size, hidden_size)
            cell_bw = LSTMCell(input_size, hidden_size)
            self.append(BiRNN(cell_fw, cell_bw, time_major))
            for i in range(1, num_layers):
                cell_fw = LSTMCell(2 * hidden_size, hidden_size)
                cell_bw = LSTMCell(2 * hidden_size, hidden_size)
                self.append(BiRNN(cell_fw, cell_bw, time_major))
        else:
            raise ValueError(
                "direction should be forward, backward or bidirectional, "
390 391
                "received direction = {}".format(direction)
            )
392 393 394 395 396 397 398 399 400 401

        self.input_size = input_size
        self.hidden_size = hidden_size
        self.dropout = dropout
        self.num_directions = 2 if direction == "bidirectional" else 1
        self.time_major = time_major
        self.num_layers = num_layers
        self.state_components = 2


402 403 404
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
405 406 407 408 409 410 411 412 413 414 415 416
class TestCUDNNLstmOp(OpTest):
    def get_weight_names(self):
        weight_names = []
        for i in range(2 * self.num_layers):
            weight_names.append('weight{}'.format(i))
        for i in range(2 * self.num_layers):
            weight_names.append('bias{}'.format(i))
        return weight_names

    def setUp(self):
        self.op_type = "cudnn_lstm"
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
417 418 419 420 421
        self.sequence_length = (
            None
            if core.is_compiled_with_rocm()
            else np.array([12, 11, 10, 9, 8], dtype=np.int32)
        )
422 423 424 425 426 427 428 429
        self.num_layers = 1
        self.set_attrs()

        seq_length = 12
        batch_size = 5
        input_size = 21
        hidden_size = 21

430 431 432
        input = np.random.uniform(
            low=-0.1, high=0.1, size=(seq_length, batch_size, input_size)
        ).astype(self.dtype)
433 434 435 436 437 438
        input[11][1:][:] = 0
        input[10][2:][:] = 0
        input[9][3:][:] = 0
        input[8][4:][:] = 0

        weight.updata_weight(hidden_size, input_size, self.dtype)
439 440 441 442 443 444 445 446 447 448 449
        rnn1 = LSTM(
            input_size,
            hidden_size,
            num_layers=self.num_layers,
            time_major=True,
            direction="forward",
        )

        output, (last_hidden, last_cell) = rnn1(
            input, sequence_length=self.sequence_length
        )
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

        flat_w = []
        num = 0
        for i in range(self.num_layers):
            if i == 0:
                weight_ih = weight.weight_ih
            else:
                weight_ih = weight.weight_hh
            flat_w.append(("weight" + str(num), weight_ih))
            num += 1
        for i in range(self.num_layers):
            weight_hh = weight.weight_hh
            flat_w.append(("weight" + str(num), weight_hh))
            num += 1
        num = 0
        for i in range(self.num_layers):
            bias_ih = weight.bias_ih
            flat_w.append(("bias" + str(num), bias_ih))
            num += 1
        for i in range(self.num_layers):
            bias_hh = weight.bias_hh
            flat_w.append(("bias" + str(num), bias_hh))
            num += 1
473 474 475 476 477 478
        init_h = np.zeros((self.num_layers, batch_size, hidden_size)).astype(
            self.dtype
        )
        init_c = np.zeros((self.num_layers, batch_size, hidden_size)).astype(
            self.dtype
        )
479 480 481 482 483 484 485 486 487 488 489 490 491 492
        state_out = np.ndarray((300)).astype("uint8")

        if core.is_compiled_with_rocm():
            for i in range(len(flat_w)):
                w = np.split(flat_w[i][1], 4, 0)
                w = [w[0], w[1], w[3], w[2]]
                w = np.concatenate(w)
                flat_w[i] = (flat_w[i][0], w)

        self.inputs = {
            'Input': input,
            'WeightList': flat_w,
            'InitH': init_h,
            'InitC': init_c,
493
            'SequenceLength': self.sequence_length,
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
        }
        if self.sequence_length is None:
            self.inputs = {
                'Input': input,
                'WeightList': flat_w,
                'InitH': init_h,
                'InitC': init_c,
            }
        self.attrs = {
            'dropout_prob': 0.0,
            'is_bidirec': False,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': self.num_layers,
        }
        self.outputs = {
            'Out': output,
            "LastH": last_hidden,
            'LastC': last_cell,
            'Reserve': np.ndarray((400)).astype("uint8"),
514
            'StateOut': state_out,
515 516 517 518 519 520 521 522
        }

    def set_attrs(self):
        pass

    def test_output_with_place(self):
        place = core.CUDAPlace(0)
        if core.is_compiled_with_rocm():
523 524 525
            self.check_output_with_place(
                place, atol=1e-5, no_check_set=['Reserve', 'StateOut']
            )
526
        else:
527 528 529
            self.check_output_with_place(
                place, no_check_set=['Reserve', 'StateOut']
            )
530 531 532 533 534 535

    def test_grad_with_place(self):
        place = core.CUDAPlace(0)
        var_name_list = self.get_weight_names()
        for var_name in var_name_list:
            self.check_grad_with_place(
536 537 538 539
                place,
                set(['Input', var_name, 'InitH', 'InitC']),
                ['Out', 'LastH', 'LastC'],
            )
540 541


542 543 544
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
545 546 547 548 549 550 551 552
class TestCUDNNlstmAPI(unittest.TestCase):
    def test_lstm(self):
        seq_len = 20
        batch_size = 5
        hidden_size = 20
        dropout_prob = 0.0
        num_layers = 1
        dtype = 'float32' if core.is_compiled_with_rocm() else 'float64'
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
        input = fluid.data(
            name='input', shape=[seq_len, batch_size, hidden_size], dtype=dtype
        )
        init_h = layers.fill_constant(
            [num_layers, batch_size, hidden_size], dtype, 0.0
        )
        init_c = layers.fill_constant(
            [num_layers, batch_size, hidden_size], dtype, 0.0
        )
        rnn_out, last_h, last_c = layers.lstm(
            input,
            init_h,
            init_c,
            seq_len,
            hidden_size,
            num_layers,
            dropout_prob,
            False,
        )
572 573
        exe = fluid.Executor(fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
574 575 576 577 578 579 580 581 582 583 584 585 586
        input_i = np.random.uniform(
            low=-0.1, high=0.1, size=(seq_len, batch_size, hidden_size)
        ).astype("float64")
        out = exe.run(
            fluid.default_main_program(),
            feed={'input': input_i},
            fetch_list=[rnn_out, last_h, last_c, 'cudnn_lstm_0.w_0'],
        )


@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
587 588 589 590 591 592 593 594
class TestCUDNNlstmAPI(unittest.TestCase):
    def test_lstm(self):
        seq_len = 20
        batch_size = 5
        hidden_size = 20
        dropout_prob = 0.0
        num_layers = 2
        dtype = 'float32' if core.is_compiled_with_rocm() else 'float64'
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
        input = fluid.data(
            name='input', shape=[seq_len, batch_size, hidden_size], dtype=dtype
        )
        init_h = layers.fill_constant(
            [num_layers, batch_size, hidden_size], dtype, 0.0
        )
        init_c = layers.fill_constant(
            [num_layers, batch_size, hidden_size], dtype, 0.0
        )
        rnn_out, last_h, last_c = layers.lstm(
            input,
            init_h,
            init_c,
            seq_len,
            hidden_size,
            num_layers,
            dropout_prob,
            False,
            True,
        )
615 616
        exe = fluid.Executor(fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
617 618 619 620 621 622 623 624
        input_i = np.random.uniform(
            low=-0.1, high=0.1, size=(seq_len, batch_size, hidden_size)
        ).astype(dtype)
        out = exe.run(
            fluid.default_main_program(),
            feed={'input': input_i},
            fetch_list=[rnn_out, last_h, last_c, 'cudnn_lstm_0.w_0'],
        )
625 626 627 628


if __name__ == '__main__':
    unittest.main()