multihead_matmul_fuse_pass.cc 60.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/multihead_matmul_fuse_pass.h"
W
wanghuancoder 已提交
16

17
#include <string>
W
wanghuancoder 已提交
18

19
#include "paddle/fluid/framework/lod_tensor.h"
20
#include "paddle/fluid/framework/op_version_registry.h"
21 22 23 24 25 26

namespace paddle {
namespace framework {
class Scope;
}  // namespace framework
}  // namespace paddle
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

namespace paddle {
namespace framework {
namespace ir {
namespace patterns {

static void ReplaceOutputVar(Node* op, Node* old_var, Node* new_var) {
  if (op->IsOp() && op->Op()) {
    new_var->inputs.push_back(op);
    for (size_t i = 0; i < op->outputs.size(); ++i) {
      if (op->outputs[i] == old_var) {
        op->outputs[i] = new_var;
        op->Op()->RenameOutput(old_var->Name(), new_var->Name());
      }
    }
  }
}

static int BuildFusion(Graph* graph, const std::string& name_scope) {
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();

  // Create pattern.
  MultiHeadMatmulPattern multihead_pattern(pattern, name_scope);

52
  multihead_pattern();
53 54
  // Create New OpDesc
  auto fuse_creater = [&](
55
      Node* input0, Node* mul0, Node* mul1, Node* mul2, Node* mul0_out,
56 57 58
      Node* mul1_out, Node* mul2_out, Node* eltadd0_b, Node* eltadd1_b,
      Node* eltadd2_b, Node* eltadd_qk_b, Node* reshape2,
      Node* reshape2_qkv_out, Node* scale, Node* scale_out) {
59 60
    auto scale_attr = BOOST_GET_CONST(float, scale->Op()->GetAttr("scale"));
    // auto scale_bias = BOOST_GET_CONST(float, scale->Op()->GetAttr("bias"));
61
    // bool after_scale =
62
    //    BOOST_GET_CONST(bool, scale->Op()->GetAttr("bias_after_scale"));
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

    // create multihead
    OpDesc multihead_op_desc;

    // create tmp tensor
    VarDesc k_var_desc(*mul1_out->Var());
    k_var_desc.SetName("K" + mul1_out->Name());
    auto* k_var_node = graph->CreateVarNode(&k_var_desc);

    VarDesc q_var_desc(*mul0_out->Var());
    q_var_desc.SetName("Q" + mul0_out->Name());
    auto* q_var_node = graph->CreateVarNode(&q_var_desc);

    VarDesc v_var_desc(*mul2_out->Var());
    v_var_desc.SetName("V" + mul2_out->Name());
    auto* v_var_node = graph->CreateVarNode(&v_var_desc);

    auto reshape_desc = reshape2->Op();
    int head_number =
82
        BOOST_GET_CONST(std::vector<int>, reshape_desc->GetAttr("shape")).at(2);
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

    ReplaceOutputVar(mul0, mul0_out, q_var_node);
    ReplaceOutputVar(mul1, mul1_out, k_var_node);
    ReplaceOutputVar(mul2, mul2_out, v_var_node);

    multihead_op_desc.SetType("multihead_matmul");
    multihead_op_desc.SetInput("Q", {q_var_node->Name()});
    multihead_op_desc.SetInput("K", {k_var_node->Name()});
    multihead_op_desc.SetInput("V", {v_var_node->Name()});

    multihead_op_desc.SetInput("BiasQ", {eltadd0_b->Name()});
    multihead_op_desc.SetInput("BiasK", {eltadd1_b->Name()});
    multihead_op_desc.SetInput("BiasV", {eltadd2_b->Name()});
    multihead_op_desc.SetInput("BiasQK", {eltadd_qk_b->Name()});

    multihead_op_desc.SetOutput("Out", {reshape2_qkv_out->Name()});
    multihead_op_desc.SetAttr("alpha", scale_attr);
    multihead_op_desc.SetAttr("head_number", head_number);

    auto* multihead = graph->CreateOpNode(&multihead_op_desc);
    IR_NODE_LINK_TO(q_var_node, multihead);
    IR_NODE_LINK_TO(k_var_node, multihead);
    IR_NODE_LINK_TO(v_var_node, multihead);

    IR_NODE_LINK_TO(eltadd0_b, multihead);
    IR_NODE_LINK_TO(eltadd1_b, multihead);
    IR_NODE_LINK_TO(eltadd2_b, multihead);
    IR_NODE_LINK_TO(eltadd_qk_b, multihead);

    IR_NODE_LINK_TO(multihead, reshape2_qkv_out);
  };

  int fusion_count{0};
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    // GET_IR_NODE_FROM_SUBGRAPH(dropout_out, dropout_out, multihead_pattern);
119
    GET_IR_NODE_FROM_SUBGRAPH(input0, input0, multihead_pattern);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

    GET_IR_NODE_FROM_SUBGRAPH(mul0, mul0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_out, mul0_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_w, mul0_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_0, reshape2_0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_0_out, reshape2_0_out,
                              multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_0, transpose2_0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_0_out, transpose2_0_out,
                              multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(scale, scale, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(scale_out, scale_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(mul1, mul1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_out, mul1_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_w, mul1_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_1, reshape2_1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_1_out, reshape2_1_out,
                              multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_1, transpose2_1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_1_out, transpose2_1_out,
                              multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(mul2, mul2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_out, mul2_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_w, mul2_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_2, reshape2_2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_2_out, reshape2_2_out,
                              multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_2, transpose2_2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_2_out, transpose2_2_out,
                              multihead_pattern);

    // nodes need be removed
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0, eltadd0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_b, eltadd0_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_out, eltadd0_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd1, eltadd1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_b, eltadd1_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_out, eltadd1_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd2, eltadd2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_b, eltadd2_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_out, eltadd2_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk, matmul_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk_out, matmul_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk, eltadd_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_b, eltadd_qk_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_out, eltadd_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(softmax_qk, softmax_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(softmax_qk_out, softmax_qk_out,
                              multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv, matmul_qkv, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv_out, matmul_qkv_out,
                              multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv, reshape2_qkv, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv_out, reshape2_qkv_out,
                              multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_qkv, transpose2_qkv,
                              multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_qkv_out, transpose2_qkv_out,
                              multihead_pattern);

189
    fuse_creater(input0, mul0, mul1, mul2, mul0_out, mul1_out, mul2_out,
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                 eltadd0_b, eltadd1_b, eltadd2_b, eltadd_qk_b, reshape2_0,
                 reshape2_qkv_out, scale, scale_out);

    std::unordered_set<const Node*> marked_nodes(
        {eltadd0,
         eltadd1,
         eltadd2,
         eltadd0_out,
         eltadd1_out,
         eltadd2_out,
         reshape2_0,
         reshape2_1,
         reshape2_2,
         reshape2_0_out,
         reshape2_1_out,
         reshape2_2_out,
         transpose2_0,
         transpose2_1,
         transpose2_2,
         transpose2_0_out,
         transpose2_1_out,
         transpose2_2_out,
         matmul_qk,
         matmul_qk_out,
         eltadd_qk,
         eltadd_qk_out,
         softmax_qk,
         softmax_qk_out,  // dropout_qk, dropout_qk_out,
         transpose2_qkv,
         transpose2_qkv_out,
         matmul_qkv,
         matmul_qkv_out,
         mul0_out,
         mul1_out,
         mul2_out,
         reshape2_qkv,
         scale});
    // Remove unneeded nodes.
    GraphSafeRemoveNodes(graph, marked_nodes);
    ++fusion_count;
  };
  gpd(graph, handler);

  return fusion_count;
}

236 237 238
PDNode* MultiHeadMatmulPattern::operator()() {
  auto* input0 = pattern->NewNode(input0_repr());
  input0->assert_is_op_input("mul");
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

  // First path with scale
  auto* mul0 = pattern->NewNode(mul0_repr())->assert_is_op("mul");
  auto* mul0_w_var = pattern->NewNode(mul0_w_repr())
                         ->AsInput()
                         ->assert_is_op_input("mul", "Y");
  auto* mul0_out_var =
      pattern->NewNode(mul0_out_repr())->assert_is_op_output("mul");

  decltype(mul0) eltadd0;
  decltype(mul0) eltadd0_b_var;
  decltype(mul0) eltadd0_out_var;

  mul0_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  eltadd0 = pattern->NewNode(eltadd0_repr())->assert_is_op("elementwise_add");
  eltadd0_b_var = pattern->NewNode(eltadd0_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd0_out_var = pattern->NewNode(eltadd0_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd0_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_0 =
      pattern->NewNode(reshape2_0_repr())->assert_is_op("reshape2");

  auto* reshape2_0_out_var =
      pattern->NewNode(reshape2_0_out_repr())->assert_is_op_output("reshape2");
  reshape2_0_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_0 =
      pattern->NewNode(transpose2_0_repr())->assert_is_op("transpose2");
  auto* transpose2_0_out_var = pattern->NewNode(transpose2_0_out_repr())
                                   ->assert_is_op_output("transpose2");
  transpose2_0_out_var->AsIntermediate()->assert_is_op_input("scale");

  auto* scale = pattern->NewNode(scale_repr())->assert_is_op("scale");
  auto* scale_out_var =
      pattern->NewNode(scale_out_repr())->assert_is_op_output("scale");
  scale_out_var->AsIntermediate()->assert_is_op_input("matmul");

  auto* matmul_qk = pattern->NewNode(matmul_qk_repr())->assert_is_op("matmul");
  auto* matmul_qk_out_var =
      pattern->NewNode(matmul_qk_out_repr())->assert_is_op_output("matmul");
  matmul_qk_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  auto* eltadd_qk =
      pattern->NewNode(eltadd_qk_repr())->assert_is_op("elementwise_add");
  auto* eltadd_qk_b_var = pattern->NewNode(eltadd_qk_b_repr())
                              ->AsInput()
                              ->assert_is_op_input("elementwise_add", "Y");
  auto* eltadd_qk_out_var = pattern->NewNode(eltadd_qk_out_repr())
                                ->assert_is_op_output("elementwise_add");
  eltadd_qk_out_var->AsIntermediate()->assert_is_op_input("softmax");

  auto* softmax_qk =
      pattern->NewNode(softmax_qk_repr())->assert_is_op("softmax");
  auto* softmax_qk_out_var =
      pattern->NewNode(softmax_qk_out_repr())->assert_is_op_output("softmax");
  softmax_qk_out_var->AsIntermediate()->assert_is_op_input("matmul");

  auto* matmul_qkv =
      pattern->NewNode(matmul_qkv_repr())->assert_is_op("matmul");
  auto* matmul_qkv_out_var =
      pattern->NewNode(matmul_qkv_out_repr())->assert_is_op_output("matmul");
  matmul_qkv_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_qkv =
      pattern->NewNode(transpose2_qkv_repr())->assert_is_op("transpose2");
  auto* transpose2_qkv_out_var = pattern->NewNode(transpose2_qkv_out_repr())
                                     ->assert_is_op_output("transpose2");
  transpose2_qkv_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_qkv =
      pattern->NewNode(reshape2_qkv_repr())->assert_is_op("reshape2");
  auto* reshape2_qkv_out_var = pattern->NewNode(reshape2_qkv_out_repr())
                                   ->assert_is_op_output("reshape2");
  reshape2_qkv_out_var->assert_is_op_input("mul");

  // Second path to matmul
  auto* mul1 = pattern->NewNode(mul1_repr())->assert_is_op("mul");
  auto* mul1_w_var = pattern->NewNode(mul1_w_repr())
                         ->AsInput()
                         ->assert_is_op_input("mul", "Y");
  auto* mul1_out_var =
      pattern->NewNode(mul1_out_repr())->assert_is_op_output("mul");

  decltype(mul1) eltadd1;
  decltype(mul1) eltadd1_b_var;
  decltype(mul1) eltadd1_out_var;

  mul1_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
  eltadd1 = pattern->NewNode(eltadd1_repr())->assert_is_op("elementwise_add");
  eltadd1_b_var = pattern->NewNode(eltadd1_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd1_out_var = pattern->NewNode(eltadd1_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd1_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_1 =
      pattern->NewNode(reshape2_1_repr())->assert_is_op("reshape2");

  auto* reshape2_1_out_var =
      pattern->NewNode(reshape2_1_out_repr())->assert_is_op_output("reshape2");
  reshape2_1_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_1 =
      pattern->NewNode(transpose2_1_repr())->assert_is_op("transpose2");
  auto* transpose2_1_out_var = pattern->NewNode(transpose2_1_out_repr())
                                   ->assert_is_op_output("transpose2");
  transpose2_1_out_var->AsIntermediate()->assert_is_op_input(
      "matmul");  // link to matmul qk

  // Third path to matmul
  auto* mul2 = pattern->NewNode(mul2_repr())->assert_is_op("mul");
  auto* mul2_w_var = pattern->NewNode(mul2_w_repr())
                         ->AsInput()
                         ->assert_is_op_input("mul", "Y");
  auto* mul2_out_var =
      pattern->NewNode(mul2_out_repr())->assert_is_op_output("mul");

  decltype(mul2) eltadd2;
  decltype(mul2) eltadd2_b_var;
  decltype(mul2) eltadd2_out_var;

  mul2_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
  eltadd2 = pattern->NewNode(eltadd2_repr())->assert_is_op("elementwise_add");
  eltadd2_b_var = pattern->NewNode(eltadd2_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd2_out_var = pattern->NewNode(eltadd2_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd2_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_2 =
      pattern->NewNode(reshape2_2_repr())->assert_is_op("reshape2");

  auto* reshape2_2_out_var =
      pattern->NewNode(reshape2_2_out_repr())->assert_is_op_output("reshape2");
  reshape2_2_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_2 =
      pattern->NewNode(transpose2_2_repr())->assert_is_op("transpose2");
  auto* transpose2_2_out_var = pattern->NewNode(transpose2_2_out_repr())
                                   ->assert_is_op_output("transpose2");
  transpose2_2_out_var->AsIntermediate()->assert_is_op_input(
      "matmul");  // link to matmul qkv

  // Q path
392
  mul0->LinksFrom({input0, mul0_w_var}).LinksTo({mul0_out_var});
393 394 395 396 397 398
  eltadd0->LinksFrom({mul0_out_var, eltadd0_b_var}).LinksTo({eltadd0_out_var});

  reshape2_0->LinksFrom({eltadd0_out_var}).LinksTo({reshape2_0_out_var});
  transpose2_0->LinksFrom({reshape2_0_out_var}).LinksTo({transpose2_0_out_var});
  scale->LinksFrom({transpose2_0_out_var}).LinksTo({scale_out_var});
  // K path
399
  mul1->LinksFrom({input0, mul1_w_var}).LinksTo({mul1_out_var});
400 401 402 403 404 405 406 407 408 409
  eltadd1->LinksFrom({mul1_out_var, eltadd1_b_var}).LinksTo({eltadd1_out_var});
  reshape2_1->LinksFrom({eltadd1_out_var}).LinksTo({reshape2_1_out_var});
  transpose2_1->LinksFrom({reshape2_1_out_var}).LinksTo({transpose2_1_out_var});
  // compute q*k
  matmul_qk->LinksFrom({scale_out_var, transpose2_1_out_var})
      .LinksTo({matmul_qk_out_var});
  eltadd_qk->LinksFrom({matmul_qk_out_var, eltadd_qk_b_var})
      .LinksTo({eltadd_qk_out_var});
  softmax_qk->LinksFrom({eltadd_qk_out_var}).LinksTo({softmax_qk_out_var});
  // V  path
410
  mul2->LinksFrom({input0, mul2_w_var}).LinksTo({mul2_out_var});
411 412 413 414 415 416 417 418 419 420 421 422 423 424
  eltadd2->LinksFrom({mul2_out_var, eltadd2_b_var}).LinksTo({eltadd2_out_var});
  reshape2_2->LinksFrom({eltadd2_out_var}).LinksTo({reshape2_2_out_var});
  transpose2_2->LinksFrom({reshape2_2_out_var}).LinksTo({transpose2_2_out_var});
  // compute q*k*v
  matmul_qkv->LinksFrom({softmax_qk_out_var, transpose2_2_out_var})
      .LinksTo({matmul_qkv_out_var});
  transpose2_qkv->LinksFrom({matmul_qkv_out_var})
      .LinksTo({transpose2_qkv_out_var});
  reshape2_qkv->LinksFrom({transpose2_qkv_out_var})
      .LinksTo({reshape2_qkv_out_var});

  return transpose2_2_out_var;
}

425 426 427
PDNode* MultiHeadMatmulV3Pattern::operator()() {
  std::unordered_set<std::string> matmul_ops{"matmul", "matmul_v2"};
  auto* input0 = pattern->NewNode(input0_repr());
428
  input0->assert_is_ops_input(matmul_ops);
429 430

  // First path with scale
431
  auto* mul0 = pattern->NewNode(mul0_repr())->assert_is_ops(matmul_ops);
432 433
  auto* mul0_w_var = pattern->NewNode(mul0_w_repr())
                         ->AsInput()
434
                         ->assert_is_ops_input(matmul_ops, "Y");
435
  auto* mul0_out_var =
436
      pattern->NewNode(mul0_out_repr())->assert_is_ops_output(matmul_ops);
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

  decltype(mul0) eltadd0;
  decltype(mul0) eltadd0_b_var;
  decltype(mul0) eltadd0_out_var;

  mul0_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  eltadd0 = pattern->NewNode(eltadd0_repr())->assert_is_op("elementwise_add");
  eltadd0_b_var = pattern->NewNode(eltadd0_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd0_out_var = pattern->NewNode(eltadd0_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd0_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_0 =
      pattern->NewNode(reshape2_0_repr())->assert_is_op("reshape2");

  auto* reshape2_0_out_var =
      pattern->NewNode(reshape2_0_out_repr())->assert_is_op_output("reshape2");
  reshape2_0_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_0 =
      pattern->NewNode(transpose2_0_repr())->assert_is_op("transpose2");
  auto* transpose2_0_out_var = pattern->NewNode(transpose2_0_out_repr())
                                   ->assert_is_op_output("transpose2");
464
  transpose2_0_out_var->AsIntermediate()->assert_is_ops_input(matmul_ops);
465

466 467
  auto* matmul_qk =
      pattern->NewNode(matmul_qk_repr())->assert_is_ops(matmul_ops);
468
  auto* matmul_qk_out_var =
469
      pattern->NewNode(matmul_qk_out_repr())->assert_is_ops_output(matmul_ops);
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
  matmul_qk_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  auto* eltadd_qk =
      pattern->NewNode(eltadd_qk_repr())->assert_is_op("elementwise_add");
  auto* eltadd_qk_b_var = pattern->NewNode(eltadd_qk_b_repr())
                              ->AsInput()
                              ->assert_is_op_input("elementwise_add", "Y");
  auto* eltadd_qk_out_var = pattern->NewNode(eltadd_qk_out_repr())
                                ->assert_is_op_output("elementwise_add");
  eltadd_qk_out_var->AsIntermediate()->assert_is_op_input("softmax");

  auto* softmax_qk =
      pattern->NewNode(softmax_qk_repr())->assert_is_op("softmax");
  auto* softmax_qk_out_var =
      pattern->NewNode(softmax_qk_out_repr())->assert_is_op_output("softmax");
  softmax_qk_out_var->AsIntermediate()->assert_is_ops_input(matmul_ops);

  auto* matmul_qkv =
      pattern->NewNode(matmul_qkv_repr())->assert_is_ops(matmul_ops);
  auto* matmul_qkv_out_var =
      pattern->NewNode(matmul_qkv_out_repr())->assert_is_ops_output(matmul_ops);
  matmul_qkv_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_qkv =
      pattern->NewNode(transpose2_qkv_repr())->assert_is_op("transpose2");
  auto* transpose2_qkv_out_var = pattern->NewNode(transpose2_qkv_out_repr())
                                     ->assert_is_op_output("transpose2");
  transpose2_qkv_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_qkv =
      pattern->NewNode(reshape2_qkv_repr())->assert_is_op("reshape2");
  auto* reshape2_qkv_out_var = pattern->NewNode(reshape2_qkv_out_repr())
                                   ->assert_is_op_output("reshape2");
503
  reshape2_qkv_out_var->assert_is_ops_input(matmul_ops);
504 505

  // Second path to matmul
506
  auto* mul1 = pattern->NewNode(mul1_repr())->assert_is_ops(matmul_ops);
507 508
  auto* mul1_w_var = pattern->NewNode(mul1_w_repr())
                         ->AsInput()
509
                         ->assert_is_ops_input(matmul_ops, "Y");
510
  auto* mul1_out_var =
511
      pattern->NewNode(mul1_out_repr())->assert_is_ops_output(matmul_ops);
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

  decltype(mul1) eltadd1;
  decltype(mul1) eltadd1_b_var;
  decltype(mul1) eltadd1_out_var;

  mul1_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
  eltadd1 = pattern->NewNode(eltadd1_repr())->assert_is_op("elementwise_add");
  eltadd1_b_var = pattern->NewNode(eltadd1_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd1_out_var = pattern->NewNode(eltadd1_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd1_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_1 =
      pattern->NewNode(reshape2_1_repr())->assert_is_op("reshape2");

  auto* reshape2_1_out_var =
      pattern->NewNode(reshape2_1_out_repr())->assert_is_op_output("reshape2");
  reshape2_1_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_1 =
      pattern->NewNode(transpose2_1_repr())->assert_is_op("transpose2");
  auto* transpose2_1_out_var = pattern->NewNode(transpose2_1_out_repr())
                                   ->assert_is_op_output("transpose2");
538 539
  transpose2_1_out_var->AsIntermediate()->assert_is_ops_input(
      matmul_ops, "Y");  // link to matmul qk
540 541

  // Third path to matmul
542
  auto* mul2 = pattern->NewNode(mul2_repr())->assert_is_ops(matmul_ops);
543 544
  auto* mul2_w_var = pattern->NewNode(mul2_w_repr())
                         ->AsInput()
545
                         ->assert_is_ops_input(matmul_ops, "Y");
546
  auto* mul2_out_var =
547
      pattern->NewNode(mul2_out_repr())->assert_is_ops_output(matmul_ops);
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749

  decltype(mul2) eltadd2;
  decltype(mul2) eltadd2_b_var;
  decltype(mul2) eltadd2_out_var;

  mul2_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
  eltadd2 = pattern->NewNode(eltadd2_repr())->assert_is_op("elementwise_add");
  eltadd2_b_var = pattern->NewNode(eltadd2_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd2_out_var = pattern->NewNode(eltadd2_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd2_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_2 =
      pattern->NewNode(reshape2_2_repr())->assert_is_op("reshape2");

  auto* reshape2_2_out_var =
      pattern->NewNode(reshape2_2_out_repr())->assert_is_op_output("reshape2");
  reshape2_2_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_2 =
      pattern->NewNode(transpose2_2_repr())->assert_is_op("transpose2");
  auto* transpose2_2_out_var = pattern->NewNode(transpose2_2_out_repr())
                                   ->assert_is_op_output("transpose2");
  transpose2_2_out_var->AsIntermediate()->assert_is_ops_input(
      matmul_ops);  // link to matmul qkv

  // Q path
  mul0->LinksFrom({input0, mul0_w_var}).LinksTo({mul0_out_var});
  eltadd0->LinksFrom({mul0_out_var, eltadd0_b_var}).LinksTo({eltadd0_out_var});

  reshape2_0->LinksFrom({eltadd0_out_var}).LinksTo({reshape2_0_out_var});
  transpose2_0->LinksFrom({reshape2_0_out_var}).LinksTo({transpose2_0_out_var});
  // K path
  mul1->LinksFrom({input0, mul1_w_var}).LinksTo({mul1_out_var});
  eltadd1->LinksFrom({mul1_out_var, eltadd1_b_var}).LinksTo({eltadd1_out_var});
  reshape2_1->LinksFrom({eltadd1_out_var}).LinksTo({reshape2_1_out_var});
  transpose2_1->LinksFrom({reshape2_1_out_var}).LinksTo({transpose2_1_out_var});
  // compute q*k
  matmul_qk->LinksFrom({transpose2_0_out_var, transpose2_1_out_var})
      .LinksTo({matmul_qk_out_var});
  eltadd_qk->LinksFrom({matmul_qk_out_var, eltadd_qk_b_var})
      .LinksTo({eltadd_qk_out_var});
  softmax_qk->LinksFrom({eltadd_qk_out_var}).LinksTo({softmax_qk_out_var});
  // V  path
  mul2->LinksFrom({input0, mul2_w_var}).LinksTo({mul2_out_var});
  eltadd2->LinksFrom({mul2_out_var, eltadd2_b_var}).LinksTo({eltadd2_out_var});
  reshape2_2->LinksFrom({eltadd2_out_var}).LinksTo({reshape2_2_out_var});
  transpose2_2->LinksFrom({reshape2_2_out_var}).LinksTo({transpose2_2_out_var});
  // compute q*k*v
  matmul_qkv->LinksFrom({softmax_qk_out_var, transpose2_2_out_var})
      .LinksTo({matmul_qkv_out_var});
  transpose2_qkv->LinksFrom({matmul_qkv_out_var})
      .LinksTo({transpose2_qkv_out_var});
  reshape2_qkv->LinksFrom({transpose2_qkv_out_var})
      .LinksTo({reshape2_qkv_out_var});

  return transpose2_2_out_var;
}
}  // namespace patterns

void MultiHeadMatmulFusePass::ApplyImpl(Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);

  int fusion_count = patterns::BuildFusion(graph, name_scope_);
  AddStatis(fusion_count);
}

MultiHeadMatmulV2FusePass::MultiHeadMatmulV2FusePass() {
  AddOpCompat(OpCompat("mul"))
      .AddInput("X")  // the shape shoule be (B, S, N*H)
      .IsTensor()
      .End()
      .AddInput("Y")  // the shape shoule be (N*H, N*H)
      .IsTensor()
      .End()
      .AddOutput("Out")  // the shape shoule be (B, S, N*H)
      .IsTensor()
      .End()
      .AddAttr("x_num_col_dims")
      .IsNumEQ(2)
      .End()
      .AddAttr("y_num_col_dims")
      .IsNumEQ(1)
      .End();

  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      // in bias, shape is (B, S, N*H),
      // in biasqk, shape is (B, H, S, S)
      .IsTensor()
      .End()
      .AddInput("Y")
      // in bias, shape is (N*H)
      // in biasqk, shape is (B, H, S, S)
      .IsTensor()
      .End()
      // in bias, shape is (B, S, N*H)
      // in biasqk, shape is (B, H, S, S)
      .AddOutput("Out")
      .IsTensor()
      .End()
      // in bias, it equal to 2
      // in biasqk, it equal to -1 or 0
      .AddAttr("axis")
      .IsIntIn({2, -1, 0})
      .End();

  AddOpCompat(OpCompat("reshape2"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Shape")
      .IsTensor()
      .IsOptional()
      .End()
      .AddInput("ShapeTensor")
      .IsTensor()
      .IsOptional()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddOutput("XShape")
      .IsTensor()
      .End()
      .AddAttr("shape")  // -->(B, S, H, N)  <--(B, S, N*H)
      .IsType<std::vector<int>>()
      .End();

  // -->: (B, S, H, N) -> (B, H, S, N)
  // <--: (B, H, S, N) -> (B, S, H, N)
  AddOpCompat(OpCompat("transpose2"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddOutput("XShape")
      .IsTensor()
      .End()
      .AddAttr("axis")  // {0, 2, 1, 3}
      .IsType<std::vector<int>>()
      .End();

  AddOpCompat(OpCompat("scale"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("scale")
      .IsType<float>()  // copy to new op. so unconstrained.
      .End()
      .AddAttr("bias")
      .IsNumEQ(0.f)
      .End()
      .AddAttr("bias_after_scale")  // bias is 0, so unconstrained.
      .IsType<bool>()
      .End();

  // QK (B, H, S, N)*(B, H, S, N) -> (B, H, S, S)
  // QKV (B, H, S, S)*(B, H, S, N) -> (B, H, S, N)
  AddOpCompat(OpCompat("matmul"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("alpha")
      .IsNumEQ(1.0f)
      .End()
      .AddAttr("transpose_X")
      .IsBoolEQ(false)
      .End()
      .AddAttr("transpose_Y")  // QK(true) QKV(false)
      .IsType<bool>()
      .End();

  AddOpCompat(OpCompat("softmax"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsIntIn({-1, 3})  // shape is (B, H, S, S), so axis is -1 or 3
      .End();
}

int MultiHeadMatmulV2FusePass::BuildFusionV2(Graph* graph,
                                             const std::string& name_scope,
                                             Scope* scope) const {
750 751 752 753
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();

  // Create pattern.
754
  patterns::MultiHeadMatmulPattern multihead_pattern(pattern, name_scope);
755

756
  multihead_pattern();
757 758
  // Create New OpDesc
  auto fuse_creater = [&](
759
      Node* input0, Node* mul0, Node* mul1, Node* mul2, Node* mul0_out,
760 761
      Node* mul1_out, Node* mul2_out, Node* mul0_w, Node* mul1_w, Node* mul2_w,
      Node* eltadd0_b, Node* eltadd1_b, Node* eltadd2_b, Node* eltadd_qk_b,
762 763 764
      Node* reshape2, Node* reshape2_qkv_out, Node* scale, Node* scale_out,
      Node* softmax_qk, Node* eltadd0, Node* eltadd1, Node* eltadd2,
      Node* matmul_qk) {
765
    auto scale_attr = BOOST_GET_CONST(float, scale->Op()->GetAttr("scale"));
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

    // mul (B * S * Hidden) x (Hidden * 3 * N * H) = (B * S * 3 * N * H)
    // bias (B * S * 3 * N * H) + bias (3 * N * H)
    // Transpose (B * S * 3 * N * H) -> (3 * B * N * S * H)
    auto* wq_tensor = scope->FindVar(mul0_w->Name())->GetMutable<LoDTensor>();
    auto* wk_tensor = scope->FindVar(mul1_w->Name())->GetMutable<LoDTensor>();
    auto* wv_tensor = scope->FindVar(mul2_w->Name())->GetMutable<LoDTensor>();

    auto* bq_tensor =
        scope->FindVar(eltadd0_b->Name())->GetMutable<LoDTensor>();
    auto* bk_tensor =
        scope->FindVar(eltadd1_b->Name())->GetMutable<LoDTensor>();
    auto* bv_tensor =
        scope->FindVar(eltadd2_b->Name())->GetMutable<LoDTensor>();

    auto* wq_data = wq_tensor->mutable_data<float>(platform::CPUPlace());
    auto* wk_data = wk_tensor->mutable_data<float>(platform::CPUPlace());
    auto* wv_data = wv_tensor->mutable_data<float>(platform::CPUPlace());
    auto* bq_data = bq_tensor->mutable_data<float>(platform::CPUPlace());
    auto* bk_data = bk_tensor->mutable_data<float>(platform::CPUPlace());
    auto* bv_data = bv_tensor->mutable_data<float>(platform::CPUPlace());

    auto combined_w_dims =
        framework::make_ddim({wq_tensor->dims()[0], 3, wq_tensor->dims()[1]});
    auto combined_bias_dims = framework::make_ddim({3, bq_tensor->dims()[0]});

792 793 794 795 796 797 798 799 800 801 802 803 804 805
    // reuse the mul0_w and eltadd_0_b nodes for the combined nodes.
    auto* combined_w_desc = mul0_w->Var();
    combined_w_desc->SetShape({wq_tensor->dims()[0], 3, wq_tensor->dims()[1]});
    combined_w_desc->SetPersistable(true);

    auto* combined_bias_desc = eltadd0_b->Var();
    combined_bias_desc->SetShape({3, bq_tensor->dims()[0]});
    combined_bias_desc->SetPersistable(true);

    framework::LoDTensor tmp_combined_w_tensor;
    tmp_combined_w_tensor.Resize(combined_w_dims);
    auto* tmp_combined_w_data =
        tmp_combined_w_tensor.mutable_data<float>(platform::CPUPlace());

806 807 808 809 810 811 812 813
    std::vector<float*> w_vec = {wq_data, wk_data, wv_data};
    int dims_h = combined_w_dims[0], dims_w = combined_w_dims[2];
    // Combine the three fc weights together.
    for (int i = 0; i < dims_h; i++) {
      for (int j = 0; j < 3; j++) {
        for (int k = 0; k < dims_w; k++) {
          int out_index = i * (3 * dims_w) + j * dims_w + k;
          int in_index = i * dims_w + k;
814
          tmp_combined_w_data[out_index] = w_vec[j][in_index];
815 816 817
        }
      }
    }
818 819 820 821 822 823 824 825 826 827 828 829 830 831

    wq_tensor->Resize(combined_w_dims);
    auto* new_combined_w_data =
        wq_tensor->mutable_data<float>(platform::CPUPlace());
    memcpy(new_combined_w_data, tmp_combined_w_data,
           sizeof(float) * wq_tensor->numel());

    scope->EraseVars({mul1_w->Name(), mul2_w->Name()});

    framework::LoDTensor tmp_combined_bias_tensor;
    tmp_combined_bias_tensor.Resize(combined_bias_dims);
    auto* tmp_combined_bias_data =
        tmp_combined_bias_tensor.mutable_data<float>(platform::CPUPlace());

832
    size_t bias_size = bq_tensor->numel();
833 834 835 836
    memcpy(tmp_combined_bias_data, bq_data, sizeof(float) * bias_size);
    memcpy(tmp_combined_bias_data + bias_size, bk_data,
           sizeof(float) * bias_size);
    memcpy(tmp_combined_bias_data + 2 * bias_size, bv_data,
837 838
           sizeof(float) * bias_size);

839 840 841 842 843 844 845
    bq_tensor->Resize(combined_bias_dims);
    auto* new_combined_bias_data =
        bq_tensor->mutable_data<float>(platform::CPUPlace());
    memcpy(new_combined_bias_data, tmp_combined_bias_data,
           sizeof(float) * bq_tensor->numel());

    scope->EraseVars({eltadd1_b->Name(), eltadd2_b->Name()});
846 847 848

    auto reshape_desc = reshape2->Op();
    int head_number =
849
        BOOST_GET_CONST(std::vector<int>, reshape_desc->GetAttr("shape")).at(2);
850 851 852 853

    OpDesc multihead_op_desc;
    multihead_op_desc.SetType("multihead_matmul");

854 855 856
    multihead_op_desc.SetInput("Input", {input0->Name()});
    multihead_op_desc.SetInput("W", {mul0_w->Name()});
    multihead_op_desc.SetInput("Bias", {eltadd0_b->Name()});
857 858 859 860 861 862
    multihead_op_desc.SetInput("BiasQK", {eltadd_qk_b->Name()});

    multihead_op_desc.SetOutput("Out", {reshape2_qkv_out->Name()});
    multihead_op_desc.SetAttr("alpha", scale_attr);
    multihead_op_desc.SetAttr("head_number", head_number);

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
    auto* mul0_op_desc = mul0->Op();
    auto* mul1_op_desc = mul1->Op();
    auto* mul2_op_desc = mul2->Op();
    if (mul0_op_desc->HasAttr("enable_int8")) {
      multihead_op_desc.SetAttr("enable_int8",
                                mul0_op_desc->GetAttr("enable_int8"));
      // all mul op has same input.
      multihead_op_desc.SetAttr("Input_scale",
                                mul0_op_desc->GetAttr("X_scale"));
      auto weight_scale0 = BOOST_GET_CONST(
          std::vector<float>, mul0_op_desc->GetAttr("weight_scale"));
      auto weight_scale1 = BOOST_GET_CONST(
          std::vector<float>, mul1_op_desc->GetAttr("weight_scale"));
      auto weight_scale2 = BOOST_GET_CONST(
          std::vector<float>, mul2_op_desc->GetAttr("weight_scale"));
      auto weight_max = std::max(weight_scale0, weight_scale1);
      weight_max = std::max(weight_max, weight_scale2);
      multihead_op_desc.SetAttr("weight_scale", weight_max);

882 883 884 885
      auto* add0_op_desc = eltadd0->Op();
      auto* add1_op_desc = eltadd1->Op();
      auto* add2_op_desc = eltadd2->Op();
      if (add0_op_desc->HasAttr("out_threshold")) {
886
        auto out_scale0 =
887
            BOOST_GET_CONST(float, add0_op_desc->GetAttr("out_threshold"));
888
        auto out_scale1 =
889
            BOOST_GET_CONST(float, add1_op_desc->GetAttr("out_threshold"));
890
        auto out_scale2 =
891
            BOOST_GET_CONST(float, add2_op_desc->GetAttr("out_threshold"));
892 893
        auto out_scale_max = std::max(out_scale0, out_scale1);
        out_scale_max = std::max(out_scale_max, out_scale2);
894
        multihead_op_desc.SetAttr("fc_out_threshold", out_scale_max);
895 896 897
      }
    }

898 899 900 901 902 903 904 905 906 907 908
    auto* softmax_qk_op_desc = softmax_qk->Op();
    auto* matmul_qk_op_desc = matmul_qk->Op();
    if (matmul_qk_op_desc->HasAttr("X_scale")) {
      multihead_op_desc.SetAttr("qkv2context_plugin_int8", true);
      if (softmax_qk_op_desc->HasAttr("out_threshold")) {
        auto qkv_plugin_scale = BOOST_GET_CONST(
            float, softmax_qk_op_desc->GetAttr("out_threshold"));
        multihead_op_desc.SetAttr("dp_probs", qkv_plugin_scale);
      }
    }

909 910
    auto* multihead = graph->CreateOpNode(&multihead_op_desc);

911 912 913
    IR_NODE_LINK_TO(input0, multihead);
    IR_NODE_LINK_TO(mul0_w, multihead);
    IR_NODE_LINK_TO(eltadd0_b, multihead);
914 915 916 917 918 919 920 921
    IR_NODE_LINK_TO(eltadd_qk_b, multihead);

    IR_NODE_LINK_TO(multihead, reshape2_qkv_out);
  };

  int fusion_count{0};
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
922 923 924 925 926
    if (!IsCompat(subgraph, g)) {
      LOG(WARNING)
          << "Op compat check in multihead_matmul_fuse_pass_v2 failed.";
      return;
    }
927
    // GET_IR_NODE_FROM_SUBGRAPH(dropout_out, dropout_out, multihead_pattern);
928
    GET_IR_NODE_FROM_SUBGRAPH(input0, input0, multihead_pattern);
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997

    GET_IR_NODE_FROM_SUBGRAPH(mul0, mul0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_out, mul0_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_w, mul0_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_0, reshape2_0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_0_out, reshape2_0_out,
                              multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_0, transpose2_0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_0_out, transpose2_0_out,
                              multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(scale, scale, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(scale_out, scale_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(mul1, mul1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_out, mul1_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_w, mul1_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_1, reshape2_1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_1_out, reshape2_1_out,
                              multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_1, transpose2_1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_1_out, transpose2_1_out,
                              multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(mul2, mul2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_out, mul2_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_w, mul2_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_2, reshape2_2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_2_out, reshape2_2_out,
                              multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_2, transpose2_2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_2_out, transpose2_2_out,
                              multihead_pattern);

    // nodes need be removed
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0, eltadd0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_b, eltadd0_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_out, eltadd0_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd1, eltadd1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_b, eltadd1_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_out, eltadd1_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd2, eltadd2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_b, eltadd2_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_out, eltadd2_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk, matmul_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk_out, matmul_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk, eltadd_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_b, eltadd_qk_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_out, eltadd_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(softmax_qk, softmax_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(softmax_qk_out, softmax_qk_out,
                              multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv, matmul_qkv, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv_out, matmul_qkv_out,
                              multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv, reshape2_qkv, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv_out, reshape2_qkv_out,
                              multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_qkv, transpose2_qkv,
                              multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_qkv_out, transpose2_qkv_out,
                              multihead_pattern);

998 999 1000 1001 1002 1003 1004 1005 1006 1007
    // If weights or biases in qkv's fc are shared by multiple multihead_matmul
    // patterns, we do not support this kind of fusion, this pass will not take
    // effect.
    bool is_fc_params_shared =
        mul0_w->outputs.size() > 1 || mul1_w->outputs.size() > 1 ||
        mul2_w->outputs.size() > 1 || eltadd0_b->outputs.size() > 1 ||
        eltadd1_b->outputs.size() > 1 || eltadd2_b->outputs.size() > 1;
    if (is_fc_params_shared) {
      return;
    }
1008 1009
    fuse_creater(input0, mul0, mul1, mul2, mul0_out, mul1_out, mul2_out, mul0_w,
                 mul1_w, mul2_w, eltadd0_b, eltadd1_b, eltadd2_b, eltadd_qk_b,
1010 1011
                 reshape2_0, reshape2_qkv_out, scale, scale_out, softmax_qk,
                 eltadd0, eltadd1, eltadd2, matmul_qk);
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

    std::unordered_set<const Node*> marked_nodes({eltadd0,
                                                  eltadd1,
                                                  eltadd2,
                                                  eltadd1_b,
                                                  eltadd2_b,
                                                  eltadd0_out,
                                                  eltadd1_out,
                                                  eltadd2_out,
                                                  reshape2_0,
                                                  reshape2_1,
                                                  reshape2_2,
                                                  reshape2_0_out,
                                                  reshape2_1_out,
                                                  reshape2_2_out,
                                                  transpose2_0,
                                                  transpose2_1,
                                                  transpose2_2,
                                                  transpose2_0_out,
                                                  transpose2_1_out,
                                                  transpose2_2_out,
                                                  matmul_qk,
                                                  matmul_qk_out,
                                                  eltadd_qk,
                                                  eltadd_qk_out,
                                                  softmax_qk,
                                                  softmax_qk_out,
                                                  transpose2_qkv,
                                                  transpose2_qkv_out,
                                                  matmul_qkv,
                                                  matmul_qkv_out,
                                                  mul0,
                                                  mul1,
                                                  mul2,
                                                  mul0_out,
                                                  mul1_out,
                                                  mul2_out,
                                                  mul1_w,
                                                  mul2_w,
                                                  reshape2_qkv,
                                                  scale});
    // Remove unneeded nodes.
    GraphSafeRemoveNodes(graph, marked_nodes);
    ++fusion_count;
  };
  gpd(graph, handler);

  return fusion_count;
}

1062 1063 1064 1065 1066 1067 1068
void MultiHeadMatmulV2FusePass::ApplyImpl(Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
  auto* scope = param_scope();
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::Fatal(
          "During the multiheadMatmul pass, The scope should not be null."));
1069

1070 1071 1072 1073 1074 1075
  int fusion_count = BuildFusionV2(graph, name_scope_, scope);
  if (fusion_count > 0) {
    graph->Set(kMultiheadMatmulPass, new bool(true));
  }
  AddStatis(fusion_count);
}
1076

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
MultiHeadMatmulV3FusePass::MultiHeadMatmulV3FusePass() {
  AddOpCompat(OpCompat("mul"))
      .AddInput("X")  // the shape shoule be (B, S, N*H)
      .IsTensor()
      .End()
      .AddInput("Y")  // the shape shoule be (N*H, N*H)
      .IsTensor()
      .End()
      .AddOutput("Out")  // the shape shoule be (B, S, N*H)
      .IsTensor()
      .End()
      .AddAttr("x_num_col_dims")
      .IsNumEQ(2)
      .End()
      .AddAttr("y_num_col_dims")
      .IsNumEQ(1)
      .End();

  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      // in bias, shape is (B, S, N*H),
      // in biasqk, shape is (B, H, S, S)
      .IsTensor()
      .End()
      .AddInput("Y")
      // in bias, shape is (N*H)
      // in biasqk, shape is (B, H, S, S)
      .IsTensor()
      .End()
      // in bias, shape is (B, S, N*H)
      // in biasqk, shape is (B, H, S, S)
      .AddOutput("Out")
      .IsTensor()
      .End()
      // in bias, it equal to 2
      // in biasqk, it equal to -1 or 0
      .AddAttr("axis")
      .IsIntIn({2, -1, 0})
      .End();

  AddOpCompat(OpCompat("reshape2"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Shape")
      .IsTensor()
      .IsOptional()
      .End()
      .AddInput("ShapeTensor")
      .IsTensor()
      .IsOptional()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddOutput("XShape")
      .IsTensor()
      .End()
      .AddAttr("shape")  // -->(B, S, H, N)  <--(B, S, N*H)
      .IsType<std::vector<int>>()
      .End();

  // -->: (B, S, H, N) -> (B, H, S, N)
  // <--: (B, H, S, N) -> (B, S, H, N)
  AddOpCompat(OpCompat("transpose2"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddOutput("XShape")
      .IsTensor()
      .End()
      .AddAttr("axis")  // {0, 2, 1, 3}
      .IsType<std::vector<int>>()
      .End();

  // QK (B, H, S, N)*(B, H, S, N) -> (B, H, S, S)
  // QKV (B, H, S, S)*(B, H, S, N) -> (B, H, S, N)
  AddOpCompat(OpCompat("matmul"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("alpha")
      .IsType<float>()  // QK(anyvalue, will copy to new op) QKV(1.0)
      .End()
      .AddAttr("transpose_X")
      .IsBoolEQ(false)
      .End()
      .AddAttr("transpose_Y")  // QK(true) QKV(false)
      .IsType<bool>()
      .End();

  AddOpCompat(OpCompat("softmax"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsIntIn({-1, 3})  // shape is (B, H, S, S), so axis is -1 or 3
      .End();
1187 1188
}

1189 1190 1191
int MultiHeadMatmulV3FusePass::BuildFusionV3(Graph* graph,
                                             const std::string& name_scope,
                                             Scope* scope) const {
1192 1193 1194 1195
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();

  // Create pattern.
1196
  patterns::MultiHeadMatmulV3Pattern multihead_pattern(pattern, name_scope);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

  multihead_pattern();
  // Create New OpDesc
  auto fuse_creater = [&](
      Node* input0, Node* mul0, Node* mul1, Node* mul2, Node* mul0_out,
      Node* mul1_out, Node* mul2_out, Node* mul0_w, Node* mul1_w, Node* mul2_w,
      Node* eltadd0_b, Node* eltadd1_b, Node* eltadd2_b, Node* eltadd_qk_b,
      Node* reshape2, Node* reshape2_qkv_out, Node* matmul_qk) {
    auto scale_attr = BOOST_GET_CONST(float, matmul_qk->Op()->GetAttr("alpha"));

    // mul (B * S * Hidden) x (Hidden * 3 * N * H) = (B * S * 3 * N * H)
    // bias (B * S * 3 * N * H) + bias (3 * N * H)
    // Transpose (B * S * 3 * N * H) -> (3 * B * N * S * H)
    auto* wq_tensor = scope->FindVar(mul0_w->Name())->GetMutable<LoDTensor>();
    auto* wk_tensor = scope->FindVar(mul1_w->Name())->GetMutable<LoDTensor>();
    auto* wv_tensor = scope->FindVar(mul2_w->Name())->GetMutable<LoDTensor>();

    auto* bq_tensor =
        scope->FindVar(eltadd0_b->Name())->GetMutable<LoDTensor>();
    auto* bk_tensor =
        scope->FindVar(eltadd1_b->Name())->GetMutable<LoDTensor>();
    auto* bv_tensor =
        scope->FindVar(eltadd2_b->Name())->GetMutable<LoDTensor>();

    auto* wq_data = wq_tensor->mutable_data<float>(platform::CPUPlace());
    auto* wk_data = wk_tensor->mutable_data<float>(platform::CPUPlace());
    auto* wv_data = wv_tensor->mutable_data<float>(platform::CPUPlace());
    auto* bq_data = bq_tensor->mutable_data<float>(platform::CPUPlace());
    auto* bk_data = bk_tensor->mutable_data<float>(platform::CPUPlace());
    auto* bv_data = bv_tensor->mutable_data<float>(platform::CPUPlace());

    auto combined_w_dims =
        framework::make_ddim({wq_tensor->dims()[0], 3, wq_tensor->dims()[1]});
    auto combined_bias_dims = framework::make_ddim({3, bq_tensor->dims()[0]});

    // reuse the mul0_w and eltadd_0_b nodes for the combined nodes.
    auto* combined_w_desc = mul0_w->Var();
    combined_w_desc->SetShape({wq_tensor->dims()[0], 3, wq_tensor->dims()[1]});
    combined_w_desc->SetPersistable(true);

    auto* combined_bias_desc = eltadd0_b->Var();
    combined_bias_desc->SetShape({3, bq_tensor->dims()[0]});
    combined_bias_desc->SetPersistable(true);

    framework::LoDTensor tmp_combined_w_tensor;
    tmp_combined_w_tensor.Resize(combined_w_dims);
    auto* tmp_combined_w_data =
        tmp_combined_w_tensor.mutable_data<float>(platform::CPUPlace());

    std::vector<float*> w_vec = {wq_data, wk_data, wv_data};
    int dims_h = combined_w_dims[0], dims_w = combined_w_dims[2];
    // Combine the three fc weights together.
    for (int i = 0; i < dims_h; i++) {
      for (int j = 0; j < 3; j++) {
        for (int k = 0; k < dims_w; k++) {
          int out_index = i * (3 * dims_w) + j * dims_w + k;
          int in_index = i * dims_w + k;
          tmp_combined_w_data[out_index] = w_vec[j][in_index];
        }
      }
    }

    wq_tensor->Resize(combined_w_dims);
    auto* new_combined_w_data =
        wq_tensor->mutable_data<float>(platform::CPUPlace());
    memcpy(new_combined_w_data, tmp_combined_w_data,
           sizeof(float) * wq_tensor->numel());

    scope->EraseVars({mul1_w->Name(), mul2_w->Name()});

    framework::LoDTensor tmp_combined_bias_tensor;
    tmp_combined_bias_tensor.Resize(combined_bias_dims);
    auto* tmp_combined_bias_data =
        tmp_combined_bias_tensor.mutable_data<float>(platform::CPUPlace());

    size_t bias_size = bq_tensor->numel();
    memcpy(tmp_combined_bias_data, bq_data, sizeof(float) * bias_size);
    memcpy(tmp_combined_bias_data + bias_size, bk_data,
           sizeof(float) * bias_size);
    memcpy(tmp_combined_bias_data + 2 * bias_size, bv_data,
           sizeof(float) * bias_size);

    bq_tensor->Resize(combined_bias_dims);
    auto* new_combined_bias_data =
        bq_tensor->mutable_data<float>(platform::CPUPlace());
    memcpy(new_combined_bias_data, tmp_combined_bias_data,
           sizeof(float) * bq_tensor->numel());

    scope->EraseVars({eltadd1_b->Name(), eltadd2_b->Name()});

    auto reshape_desc = reshape2->Op();
    int head_number =
        BOOST_GET_CONST(std::vector<int>, reshape_desc->GetAttr("shape")).at(2);

    OpDesc multihead_op_desc;
    multihead_op_desc.SetType("multihead_matmul");

    multihead_op_desc.SetInput("Input", {input0->Name()});
    multihead_op_desc.SetInput("W", {mul0_w->Name()});
    multihead_op_desc.SetInput("Bias", {eltadd0_b->Name()});
    multihead_op_desc.SetInput("BiasQK", {eltadd_qk_b->Name()});

    multihead_op_desc.SetOutput("Out", {reshape2_qkv_out->Name()});
    multihead_op_desc.SetAttr("alpha", scale_attr);
    multihead_op_desc.SetAttr("head_number", head_number);

    auto* multihead = graph->CreateOpNode(&multihead_op_desc);

    IR_NODE_LINK_TO(input0, multihead);
    IR_NODE_LINK_TO(mul0_w, multihead);
    IR_NODE_LINK_TO(eltadd0_b, multihead);
    IR_NODE_LINK_TO(eltadd_qk_b, multihead);

    IR_NODE_LINK_TO(multihead, reshape2_qkv_out);
  };

  int fusion_count{0};
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    // GET_IR_NODE_FROM_SUBGRAPH(dropout_out, dropout_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(input0, input0, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(mul0, mul0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_out, mul0_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_w, mul0_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_0, reshape2_0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_0_out, reshape2_0_out,
                              multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_0, transpose2_0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_0_out, transpose2_0_out,
                              multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(mul1, mul1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_out, mul1_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_w, mul1_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_1, reshape2_1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_1_out, reshape2_1_out,
                              multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_1, transpose2_1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_1_out, transpose2_1_out,
                              multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(mul2, mul2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_out, mul2_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_w, mul2_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_2, reshape2_2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_2_out, reshape2_2_out,
                              multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_2, transpose2_2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_2_out, transpose2_2_out,
                              multihead_pattern);

    // nodes need be removed
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0, eltadd0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_b, eltadd0_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_out, eltadd0_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd1, eltadd1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_b, eltadd1_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_out, eltadd1_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd2, eltadd2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_b, eltadd2_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_out, eltadd2_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk, matmul_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk_out, matmul_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk, eltadd_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_b, eltadd_qk_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_out, eltadd_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(softmax_qk, softmax_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(softmax_qk_out, softmax_qk_out,
                              multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv, matmul_qkv, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv_out, matmul_qkv_out,
                              multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv, reshape2_qkv, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv_out, reshape2_qkv_out,
                              multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_qkv, transpose2_qkv,
                              multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_qkv_out, transpose2_qkv_out,
                              multihead_pattern);

    // If weights or biases in qkv's fc are shared by multiple multihead_matmul
    // patterns, we do not support this kind of fusion, this pass will not take
    // effect.
    bool is_fc_params_shared =
        mul0_w->outputs.size() > 1 || mul1_w->outputs.size() > 1 ||
        mul2_w->outputs.size() > 1 || eltadd0_b->outputs.size() > 1 ||
        eltadd1_b->outputs.size() > 1 || eltadd2_b->outputs.size() > 1;
    if (is_fc_params_shared) {
      return;
    }
    fuse_creater(input0, mul0, mul1, mul2, mul0_out, mul1_out, mul2_out, mul0_w,
                 mul1_w, mul2_w, eltadd0_b, eltadd1_b, eltadd2_b, eltadd_qk_b,
                 reshape2_0, reshape2_qkv_out, matmul_qk);

    std::unordered_set<const Node*> marked_nodes({eltadd0,
                                                  eltadd1,
                                                  eltadd2,
                                                  eltadd1_b,
                                                  eltadd2_b,
                                                  eltadd0_out,
                                                  eltadd1_out,
                                                  eltadd2_out,
                                                  reshape2_0,
                                                  reshape2_1,
                                                  reshape2_2,
                                                  reshape2_0_out,
                                                  reshape2_1_out,
                                                  reshape2_2_out,
                                                  transpose2_0,
                                                  transpose2_1,
                                                  transpose2_2,
                                                  transpose2_0_out,
                                                  transpose2_1_out,
                                                  transpose2_2_out,
                                                  matmul_qk,
                                                  matmul_qk_out,
                                                  eltadd_qk,
                                                  eltadd_qk_out,
                                                  softmax_qk,
                                                  softmax_qk_out,
                                                  transpose2_qkv,
                                                  transpose2_qkv_out,
                                                  matmul_qkv,
                                                  matmul_qkv_out,
                                                  mul0,
                                                  mul1,
                                                  mul2,
                                                  mul0_out,
                                                  mul1_out,
                                                  mul2_out,
                                                  mul1_w,
                                                  mul2_w,
                                                  reshape2_qkv});
    // Remove unneeded nodes.
    GraphSafeRemoveNodes(graph, marked_nodes);
    ++fusion_count;
  };
  gpd(graph, handler);

  return fusion_count;
}

void MultiHeadMatmulV3FusePass::ApplyImpl(Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
  auto* scope = param_scope();
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::Fatal(
          "During the multiheadMatmul pass, The scope should not be null."));

1455
  int fusion_count = BuildFusionV3(graph, name_scope_, scope);
1456 1457 1458 1459 1460 1461
  if (fusion_count > 0) {
    graph->Set(kMultiheadMatmulPass, new bool(true));
  }
  AddStatis(fusion_count);
}

1462 1463 1464 1465 1466 1467
}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(multihead_matmul_fuse_pass,
              paddle::framework::ir::MultiHeadMatmulFusePass);
1468 1469 1470

REGISTER_PASS(multihead_matmul_fuse_pass_v2,
              paddle::framework::ir::MultiHeadMatmulV2FusePass);
1471 1472
REGISTER_PASS(multihead_matmul_fuse_pass_v3,
              paddle::framework::ir::MultiHeadMatmulV3FusePass);
1473 1474 1475 1476
REGISTER_PASS_CAPABILITY(multihead_matmul_fuse_pass_v2)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .EQ("mul", 0)
1477
            .LE("elementwise_add", 1)
1478 1479 1480
            .EQ("reshape2", 0)
            .EQ("transpose2", 0)
            .EQ("scale", 0)
1481
            .LE("matmul", 1)
1482
            .EQ("softmax", 0));
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
REGISTER_PASS_CAPABILITY(multihead_matmul_fuse_pass_v3)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .LE("elementwise_add", 1)
            .EQ("reshape2", 0)
            .EQ("transpose2", 0)
            .EQ("scale", 0)
            .LE("matmul", 1)
            .EQ("matmul_v2", 0)
            .EQ("softmax", 0));