device_context.cc 10.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
11
#include "paddle/fluid/platform/device_context.h"
12
#include <set>
13
#include <string>
Y
Yu Yang 已提交
14
#include <unordered_set>
15 16
#include <vector>

Y
Yi Wang 已提交
17
#include "paddle/fluid/memory/memory.h"
18 19
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
S
sneaxiy 已提交
20
#include "paddle/fluid/platform/cuda_device_guard.h"
21
#endif
22

Q
qijun 已提交
23 24 25
namespace paddle {
namespace platform {

D
dzhwinter 已提交
26 27
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
28
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
29 30 31 32 33 34
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
    PADDLE_THROW(
        "'Place' is not supported, Please re-compile with WITH_GPU "
        "option");
  }
35
  return it->second.get().get();
D
dzhwinter 已提交
36 37
}

38 39 40 41 42 43 44 45 46 47 48
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
                     return PtrType(new DevCtx(boost::get<PlaceType>(p)));
                   }));
C
chengduozh 已提交
49 50
}

D
dzhwinter 已提交
51 52 53
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
54
  std::set<Place> set;
Y
Yu Yang 已提交
55 56 57 58 59 60
  for (auto& p : places) {
    set.insert(p);
  }

  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
61
#ifdef PADDLE_WITH_MKLDNN
62
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
63
#else
64
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
65
#endif
Y
Yu Yang 已提交
66
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
67
#ifdef PADDLE_WITH_CUDA
68
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
69 70
#else
      PADDLE_THROW(
D
dzhwinter 已提交
71
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
D
dzhwinter 已提交
72
          "option");
C
chengduoZH 已提交
73 74 75
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
76 77
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
78 79 80 81
#else
      PADDLE_THROW(
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
          "option");
D
dzhwinter 已提交
82 83 84 85 86
#endif
    }
  }
}

87 88 89 90
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
91
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
92 93 94 95 96 97 98
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
99
Place CPUDeviceContext::GetPlace() const { return place_; }
100

101
#ifdef PADDLE_WITH_CUDA
102

Q
init  
qijun 已提交
103 104 105 106 107 108 109
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
110
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
111 112 113 114 115 116 117 118 119 120 121 122
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
Y
Yu Yang 已提交
123 124
    auto buf = paddle::memory::Alloc(place_, num_bytes,
                                     memory::Allocator::kScratchpad);
125 126 127
    void* retv = buf->ptr();
    allocations_[buf->ptr()] = std::move(buf);
    return retv;
Q
init  
qijun 已提交
128 129 130
  }

  void deallocate(void* buffer) const override {
131
    allocations_.erase(allocations_.find(buffer));
Q
init  
qijun 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
  }

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
      PADDLE_ENFORCE(
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
153
  CUDAPlace place_;
Q
init  
qijun 已提交
154 155
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
156
  mutable void* scratch_;
Q
init  
qijun 已提交
157
  mutable unsigned int* semaphore_;
Y
Yu Yang 已提交
158
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
159 160
};

S
sneaxiy 已提交
161
CudnnHolder::CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place)
Y
Yu Yang 已提交
162
    : workspace_(nullptr), stream_(stream), place_(place) {
S
sneaxiy 已提交
163 164 165
  PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
  PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, *stream_));
}
166

S
sneaxiy 已提交
167 168
CudnnHolder::~CudnnHolder() {
  PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
S
sneaxiy 已提交
169
}
170

S
sneaxiy 已提交
171
void CudnnHolder::ReallocateWorkspace(size_t required_workspace_len) {
Y
Yu Yang 已提交
172
  if (required_workspace_len <= WorkspaceSize()) {
S
sneaxiy 已提交
173
    return;
Y
Yu Yang 已提交
174
  }
S
sneaxiy 已提交
175 176 177
  if (workspace_ != nullptr) {
    // Maybe someone is using the current workspace
    PADDLE_ENFORCE(cudaStreamSynchronize(*stream_));
Y
Yu Yang 已提交
178
    workspace_.reset();
179
  }
Y
Yu Yang 已提交
180 181
  workspace_ = paddle::memory::Alloc(place_, required_workspace_len,
                                     paddle::memory::Allocator::kScratchpad);
S
sneaxiy 已提交
182
}
183 184 185

CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
    : place_(place), cudnn_holder_(nullptr) {
Y
Yu Yang 已提交
186
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
187 188 189
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
Q
init  
qijun 已提交
190 191 192
  PADDLE_ENFORCE(cudaStreamCreate(&stream_));
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&stream_, place);
193
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
194 195
  PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_));
  PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_));
D
dzhwinter 已提交
196
  if (dynload::HasCUDNN()) {
197
    cudnn_holder_.reset(new CudnnHolder(&stream_, place));
D
dzhwinter 已提交
198
  }
S
sneaxiy 已提交
199

C
chengduo 已提交
200 201 202
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

203 204 205 206 207 208
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
                          << ", CUDA Capability: " << compute_capability_
                          << ", Driver Version: " << driver_version_ / 1000
                          << "." << (driver_version_ % 100) / 10
                          << ", Runtime Version: " << runtime_version_ / 1000
                          << "." << (runtime_version_ % 100) / 10;
209 210 211 212
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
                          << (cudnn_dso_ver % 100) / 10 << ".";
S
sneaxiy 已提交
213
  callback_manager_.reset(new StreamCallbackManager(stream_));
214 215 216 217
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
L
liaogang 已提交
218
  Wait();
S
sneaxiy 已提交
219
  WaitStreamCallback();
220
  PADDLE_ENFORCE(dynload::cublasDestroy(cublas_handle_));
221 222
  eigen_stream_.reset();
  eigen_device_.reset();
Q
init  
qijun 已提交
223
  PADDLE_ENFORCE(cudaStreamDestroy(stream_));
224 225
}

L
liaogang 已提交
226
Place CUDADeviceContext::GetPlace() const { return place_; }
227

L
liaogang 已提交
228
void CUDADeviceContext::Wait() const {
Q
init  
qijun 已提交
229
  PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
230 231 232
  PADDLE_ENFORCE(cudaGetLastError());
}

K
Kexin Zhao 已提交
233
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
234
  return compute_capability_;
K
Kexin Zhao 已提交
235 236
}

237
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
238
  return multi_process_ * max_threads_per_mp_;
239 240
}

241 242 243 244
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
  return eigen_device_.get();
}

245
cublasHandle_t CUDADeviceContext::cublas_handle() const {
246 247 248
  return cublas_handle_;
}

249 250 251 252
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return cudnn_holder_->cudnn_handle();
}

S
sneaxiy 已提交
253 254
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
  return CudnnWorkspaceHandle(cudnn_holder_.get());
255
}
256

257
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
Q
qijun 已提交
258

C
chengduoZH 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
273
#endif
Q
qijun 已提交
274

T
tensor-tang 已提交
275 276
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
277 278 279
    : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobmap_() {
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
280 281
}

S
Sylwester Fraczek 已提交
282 283 284 285 286 287 288 289
namespace {
// Current thread's id.
thread_local int cur_thread_id = 0;
}

void set_cur_thread_id(int tid) { cur_thread_id = tid; }
int get_cur_thread_id(void) { return cur_thread_id; }

290 291
void MKLDNNDeviceContext::SetBlob(const std::string& name,
                                  std::shared_ptr<void> data) const {
292 293 294 295
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;

  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
296

297
  std::lock_guard<std::mutex> lock(*p_mutex_.get());
T
tensor-tang 已提交
298

299 300 301 302 303 304 305
  // Find KeyBlob for current thread
  auto map_it = pMap->find(tid);

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
    pBlob = std::shared_ptr<KeyBlob>(new KeyBlob());
    (*pMap)[tid] = pBlob;
306
  } else {
307
    pBlob = map_it->second;
308
  }
T
tensor-tang 已提交
309

310 311 312 313 314 315 316 317 318 319
  // Find Key in found (or newly created) KeyBlob
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) {
    (*pBlob)[name] = data;  // create new blob
  } else {
    key_it->second = data;  // set data to existing blob
  }

  // lock will be automatically released when out of scope
320
  return;
T
tensor-tang 已提交
321 322
}

323 324
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
    const std::string& name) const {
325 326
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
327

328
  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
329

330 331 332 333 334 335 336 337 338 339 340
  std::lock_guard<std::mutex> lock(*p_mutex_.get());

  // Find KeyBlob for current thread firstly
  auto map_it = pMap->find(tid);
  if (map_it == pMap->end()) return nullptr;
  pBlob = map_it->second;

  // Find Blob via name
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) return nullptr;
341

342 343
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
344 345 346 347
}

#endif

Q
qijun 已提交
348
}  // namespace platform
Q
qijun 已提交
349
}  // namespace paddle