sequence_pool_op.h 4.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <string>
Y
Yi Wang 已提交
17 18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_pooling.h"
21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

Q
QI JUN 已提交
28
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
29
class SequencePoolKernel : public framework::OpKernel<T> {
30 31 32
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
33
    auto* out = context.Output<LoDTensor>("Out");
D
dzhwinter 已提交
34
    std::string pooltype = context.Attr<std::string>("pooltype");
35
    T pad_value = static_cast<T>(context.Attr<float>("pad_value"));
36 37

    auto dims = in->dims();
Q
Qiao Longfei 已提交
38
    auto lod = in->lod();
39
    auto lod_level = lod.size();
Q
Qiao Longfei 已提交
40
    // InferShape by lod
41 42 43
    PADDLE_ENFORCE_GT(lod_level, 0, platform::errors::InvalidArgument(
                                        "Input(X) Tensor of SequencePoolOp "
                                        "does not contain LoD information."));
44
    PADDLE_ENFORCE_LE(lod_level, 2UL,
45 46 47 48
                      platform::errors::InvalidArgument(
                          "The lod level of input shall be no more than 2."
                          "Received lod level is %d.",
                          lod_level));
Q
Qiao Longfei 已提交
49 50
    PADDLE_ENFORCE_GE(
        dims[0],
51
        /*batch size = */ static_cast<int64_t>(lod[lod_level - 1].size() - 1),
52 53 54 55 56
        platform::errors::InvalidArgument(
            "The first dimension of Input(X) must be large than batch size."
            "But received first dimension of Input(X) is %d, while batch"
            "size is %d.",
            dims[0], static_cast<int64_t>(lod[lod_level - 1].size() - 1)));
57 58
    if (lod_level > 1UL) {
      PADDLE_ENFORCE_EQ(lod[0][lod[0].size() - 1], lod[1].size() - 1,
59 60
                        platform::errors::InvalidArgument(
                            "The input lod information is illegal."));
61 62 63 64 65
      framework::LoD out_lod;
      out_lod.push_back(lod[0]);
      out->set_lod(out_lod);
    }
    dims[0] = lod[lod_level - 1].size() - 1;
Q
Qiao Longfei 已提交
66
    out->Resize({dims});
67
    out->mutable_data<T>(context.GetPlace());
J
Jacek Czaja 已提交
68 69
    Tensor* index = nullptr;

70 71
    bool is_test =
        context.HasAttr("is_test") ? context.Attr<bool>("is_test") : false;
J
Jacek Czaja 已提交
72 73 74 75 76 77 78

    // Do not create index buffer for inference (is_test) mode
    // TODO(jczaja): Skip index buffer creation for other devices eg. GPU
    if (pooltype == "MAX" &&
        (is_test == false ||
         platform::is_cpu_place(context.GetPlace()) == false)) {
      index = context.Output<Tensor>("MaxIndex");
79 80
      index->Resize({dims});
      index->mutable_data<int>(context.GetPlace());
81
    }
D
dzhwinter 已提交
82
    math::SequencePoolFunctor<DeviceContext, T> pool;
83 84
    pool(context.template device_context<DeviceContext>(), pooltype, pad_value,
         *in, out, is_test, index);
85 86 87
  }
};

Q
QI JUN 已提交
88
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
89
class SequencePoolGradKernel : public framework::OpKernel<T> {
90 91
 public:
  void Compute(const framework::ExecutionContext& context) const override {
92
    auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
93
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
D
dzhwinter 已提交
94
    std::string pooltype = context.Attr<std::string>("pooltype");
D
dzhwinter 已提交
95
    const Tensor* index = nullptr;
96
    if (pooltype == "MAX") {
D
dzhwinter 已提交
97
      index = context.Input<Tensor>("MaxIndex");
98
    }
D
dzhwinter 已提交
99 100 101 102
    in_g->mutable_data<T>(context.GetPlace());
    math::SequencePoolGradFunctor<DeviceContext, T> pool;
    pool(context.template device_context<DeviceContext>(), pooltype, *out_g,
         in_g, index);
103 104 105 106 107
  }
};

}  // namespace operators
}  // namespace paddle