test_while_op.py 8.0 KB
Newer Older
C
chengduoZH 已提交
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yang Yang(Tony) 已提交
15
import unittest
L
Leo Chen 已提交
16
import paddle
17 18 19
import paddle.fluid.layers as layers
from paddle.fluid.executor import Executor
import paddle.fluid.core as core
20
import paddle.fluid as fluid
21
from paddle.fluid.backward import append_backward
Y
Yang Yang(Tony) 已提交
22 23
import numpy

24 25
paddle.enable_static()

Y
Yang Yang(Tony) 已提交
26 27

class TestWhileOp(unittest.TestCase):
28
    def simple_net(self):
29 30 31 32 33 34 35 36 37
        d0 = layers.data(
            "d0", shape=[10], append_batch_size=False, dtype='float32'
        )
        d1 = layers.data(
            "d1", shape=[10], append_batch_size=False, dtype='float32'
        )
        d2 = layers.data(
            "d2", shape=[10], append_batch_size=False, dtype='float32'
        )
Y
Yang Yang(Tony) 已提交
38 39 40
        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True
        init = layers.zeros(shape=[10], dtype='float32')
Y
Yang Yang(Tony) 已提交
41
        mem_array = layers.array_write(x=init, i=i)
Y
Yang Yang(Tony) 已提交
42 43 44 45 46 47 48
        data_array = layers.array_write(x=d0, i=i)
        i = layers.increment(i)
        layers.array_write(d1, i, array=data_array)
        i = layers.increment(i)
        layers.array_write(d2, i, array=data_array)
        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True
C
chengduoZH 已提交
49
        array_len = layers.fill_constant(shape=[1], dtype='int64', value=1)
Y
Yang Yang(Tony) 已提交
50
        array_len.stop_gradient = True
Y
Yang Yang(Tony) 已提交
51
        cond = layers.less_than(x=i, y=array_len)
C
chengduoZH 已提交
52 53 54 55 56
        j = layers.fill_constant(shape=[1], dtype='int64', value=1)
        j.stop_gradient = True
        array_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3)
        array_len2.stop_gradient = True
        cond2 = layers.less_than(x=j, y=array_len2)
Y
Yang Yang(Tony) 已提交
57
        while_op = layers.While(cond=cond)
C
chengduoZH 已提交
58
        while_op2 = layers.While(cond=cond2)
Y
Yang Yang(Tony) 已提交
59 60 61 62
        with while_op.block():
            d = layers.array_read(array=data_array, i=i)
            prev = layers.array_read(array=mem_array, i=i)
            result = layers.sums(input=[d, prev])
Y
Yang Yang(Tony) 已提交
63 64

            i = layers.increment(x=i, in_place=True)
Y
Yang Yang(Tony) 已提交
65 66
            layers.array_write(result, i=i, array=mem_array)
            layers.less_than(x=i, y=array_len, cond=cond)
Y
Yang Yang(Tony) 已提交
67

C
chengduoZH 已提交
68 69 70 71 72 73 74 75 76
            with while_op2.block():
                d2 = layers.array_read(array=data_array, i=j)
                prev2 = layers.array_read(array=mem_array, i=j)
                result2 = layers.sums(input=[d2, prev2])

                j = layers.increment(x=j, in_place=True)
                layers.array_write(result2, i=j, array=mem_array)
                layers.less_than(x=j, y=array_len2, cond=cond2)
        sum_result = layers.array_read(array=mem_array, i=j)
77
        loss = paddle.mean(sum_result)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        return loss, sum_result

    def test_simple_net(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            loss, sum_result = self.simple_net()

            append_backward(loss)

            cpu = core.CPUPlace()
            exe = Executor(cpu)
            d = []

            for i in range(3):
                d.append(numpy.random.random(size=[10]).astype('float32'))

95 96 97 98
            outs = exe.run(
                feed={'d0': d[0], 'd1': d[1], 'd2': d[2]},
                fetch_list=[sum_result],
            )
99
            self.assertAlmostEqual(numpy.sum(d), numpy.sum(outs[0]), delta=0.01)
Y
Yang Yang(Tony) 已提交
100

101 102 103 104 105 106
    def test_simple_net_forward(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            self.simple_net()
            binary = fluid.compiler.CompiledProgram(main_program)
Y
Yang Yang(Tony) 已提交
107

108 109 110
            cpu = core.CPUPlace()
            exe = Executor(cpu)
            d = []
Y
Yang Yang(Tony) 已提交
111

112 113
            for i in range(3):
                d.append(numpy.random.random(size=[10]).astype('float32'))
Y
Yang Yang(Tony) 已提交
114

115 116
            for _ in range(2):
                exe.run(binary, feed={'d0': d[0], 'd1': d[1], 'd2': d[2]})
Y
Yang Yang(Tony) 已提交
117

118 119 120 121 122 123 124 125 126 127
    def test_exceptions(self):
        i = layers.zeros(shape=[2], dtype='int64')
        array_len = layers.fill_constant(shape=[2], dtype='int64', value=1)
        cond = layers.less_than(x=i, y=array_len)
        with self.assertRaises(TypeError):
            layers.While(cond=cond)
        cond = layers.cast(cond, dtype='float64')
        with self.assertRaises(TypeError):
            layers.While(cond=cond)

Y
Yang Yang(Tony) 已提交
128

129 130 131 132 133 134 135 136 137 138 139
class BadInputTest(unittest.TestCase):
    def test_error(self):
        with fluid.program_guard(fluid.Program()):

            def test_bad_x():
                x = [1, 2, 3]
                fluid.layers.increment(x)

            self.assertRaises(TypeError, test_bad_x)


140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
class TestIgnoreVarNameInWhile(unittest.TestCase):
    def test_ignore_var(self):
        def cond(i, ten, temp, y):
            return i < ten

        def body_func(i, ten, batch_info, origin_seq):
            print(batch_info)
            batch_info = fluid.contrib.layers.shuffle_batch(batch_info)
            print(batch_info)
            i = i + 1
            return [i, ten, batch_info, origin_seq]

        x = fluid.layers.data(name='x', shape=[-1, 1, 4])
        y = fluid.layers.data(name='y', shape=[-1, 1, 1])
        temp = layers.concat(input=[x, y], axis=-1)
        i = layers.fill_constant(shape=[1], value=0, dtype='int32')
        num = layers.fill_constant(shape=[1], value=5, dtype='int32')

158 159 160
        i, ten, shuffle_temp, y = layers.while_loop(
            cond, body_func, [i, num, temp, y]
        )
161 162 163 164 165 166 167 168 169 170 171

        output = shuffle_temp

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        input_x = numpy.array([[1, 2, 3, 4], [4, 5, 6, 7], [7, 8, 9, 10]])
        input_x = input_x.reshape(3, 1, 4)
        input_y = numpy.array([[10], [12], [33]])
        input_y = input_y.reshape(3, 1, 1)

172 173 174 175 176
        (res,) = exe.run(
            fluid.default_main_program(),
            feed={'x': input_x, 'y': input_y},
            fetch_list=[output],
        )
177 178 179 180

        self.assertListEqual(list(res.shape), [3, 1, 5])


181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
class TestOutputsMustExistsInputs(unittest.TestCase):
    def test_outputs_exists_inputs(self):
        """
        We guarantee that the output tensor must be in the input tensor, so that the output and input can correspond to each other, but the input can be greater than the number of outputs. It's required in paddle2onnx.
        """
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):

            def func(x):
                s = paddle.zeros([1])
                i = paddle.ones([1])
                max_len = paddle.shape(x)[0]

                def cond(i, s, x):
                    return i < max_len

                def body(i, s, x):
                    iter = x[i]
                    s += iter
                    i += 1
                    return i, s, x

                [i, s, x] = paddle.static.nn.while_loop(cond, body, [i, s, x])
                return s

            paddle.enable_static()
            x = paddle.static.data(shape=[-1], name='x')
            func(x)
        for op in main_program.block(0).ops:
            if op.type == "while":
                for out_name in op.output("Out"):
213 214
                    if out_name in op.input("Condition"):
                        continue
215 216
                    self.assertTrue(
                        out_name in op.input("X"),
217 218 219 220
                        "In while op, the variable in output(`Out`) must exists in inputs(`X`), but the variable with name `{}` not meet the precondition.".format(
                            out_name
                        ),
                    )
221 222


Y
Yang Yang(Tony) 已提交
223 224
if __name__ == '__main__':
    unittest.main()