trace_kernel_impl.h 7.9 KB
Newer Older
H
hong 已提交
1
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
L
Li Fuchen 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
H
hong 已提交
16 17 18 19 20 21

#if defined(__NVCC__) || defined(__HIPCC__)
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#endif

L
Li Fuchen 已提交
22
#include <algorithm>
H
hong 已提交
23

L
Li Fuchen 已提交
24 25 26 27
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/for_range.h"

H
hong 已提交
28
namespace pten {
L
Li Fuchen 已提交
29
template <typename T>
30
struct DiagonalFunctor {
H
hong 已提交
31 32 33 34 35
  DiagonalFunctor(const T* input,
                  const int64_t* diag_stride,
                  const int64_t* ret_strides,
                  int64_t pos,
                  int64_t dim_size,
36
                  T* diag)
L
Li Fuchen 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
      : input_(input),
        diag_stride_(diag_stride),
        ret_strides_(ret_strides),
        pos_(pos),
        dim_size_(dim_size),
        diag_(diag) {}

  HOSTDEVICE void operator()(size_t idx) const {
    int64_t position = pos_;
    int64_t num = idx;
    for (int64_t i = 0; i < dim_size_; i++) {
      position += num / diag_stride_[i] * ret_strides_[i];
      num = num % diag_stride_[i];
    }
    diag_[idx] = input_[position];
  }

  const T* input_;
  const int64_t* diag_stride_;
  const int64_t* ret_strides_;
  int64_t pos_;
  int64_t dim_size_;
  T* diag_;
};

template <typename T>
struct TraceGradFunctor {
H
hong 已提交
64 65 66 67 68 69 70 71 72
  TraceGradFunctor(const T* d_out,
                   const int64_t* out_stride,
                   const int64_t* x_strides,
                   int64_t pos,
                   int64_t dim_size,
                   int64_t dim1,
                   int64_t dim2,
                   int64_t diag_size,
                   T* d_x)
L
Li Fuchen 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
      : d_out_(d_out),
        out_stride_(out_stride),
        x_strides_(x_strides),
        pos_(pos),
        dim_size_(dim_size),
        dim1_(dim1),
        dim2_(dim2),
        diag_size_(diag_size),
        d_x_(d_x) {}

  HOSTDEVICE void operator()(size_t idx) const {
    int64_t num = idx - pos_;
    int64_t position = 0;
    if (num >= 0) {
      int64_t dim1 = 0;
      int64_t dim2 = 0;
      int64_t out_idx = 0;
      for (int64_t i = 0; i < dim_size_; i++) {
        if (i != dim1_ && i != dim2_) {
          position += num / x_strides_[i] * out_stride_[out_idx++];
        } else if (i == dim1_) {
          dim1 = num / x_strides_[i];
        } else {
          dim2 = num / x_strides_[i];
        }
        num = num % x_strides_[i];
      }
      if (dim1 == dim2 && dim1 < diag_size_) {
        d_x_[idx] = d_out_[position];
      }
    }
  }
  const T* d_out_;
  const int64_t* out_stride_;
  const int64_t* x_strides_;
  int64_t pos_;
  int64_t dim_size_;
  int64_t dim1_;
  int64_t dim2_;
  int64_t diag_size_;
  T* d_x_;
};

H
hong 已提交
116 117 118 119 120 121
template <typename T, typename DeviceContext>
DenseTensor Diagonal(const DeviceContext& context,
                     const DenseTensor* input,
                     int64_t offset,
                     int64_t dim1,
                     int64_t dim2) {
L
Li Fuchen 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  auto* input_data = input->data<T>();
  auto input_dims = input->dims();
  auto input_stride = framework::stride(input_dims);
  auto dim1_ = dim1 < 0 ? input_dims.size() + dim1 : dim1;
  auto dim2_ = dim2 < 0 ? input_dims.size() + dim2 : dim2;
  auto len1 = input_dims[std::min(dim1_, dim2_)];
  auto len2 = input_dims[std::max(dim1_, dim2_)];
  auto stride1 = input_stride[std::min(dim1_, dim2_)];
  auto stride2 = input_stride[std::max(dim1_, dim2_)];

  int offset_stride = 0;
  if (offset >= 0) {
    offset_stride = stride2;
    len2 -= offset;
  } else {
    offset_stride = stride1;
    len1 += offset;
  }
  int diag_size = len2 < len1 ? len2 : len1;

  if (diag_size > 0) {
    auto ret_strides = vectorize(input_stride);
    auto ret_dims = vectorize(input_dims);
    ret_strides.erase(ret_strides.begin() + std::max(dim1_, dim2_));
    ret_strides.erase(ret_strides.begin() + std::min(dim1_, dim2_));
    ret_dims.erase(ret_dims.begin() + std::max(dim1_, dim2_));
    ret_dims.erase(ret_dims.begin() + std::min(dim1_, dim2_));
    if (ret_strides.empty()) {
      ret_strides.push_back(1);
      ret_dims.push_back(1);
    }
    ret_strides.push_back(stride1 + stride2);
    ret_dims.push_back(diag_size);
H
hong 已提交
155
    DenseTensor diag;
L
Li Fuchen 已提交
156 157 158 159 160 161
    framework::DDim diag_dims = framework::make_ddim(ret_dims);
    auto dig_stride = framework::stride(diag_dims);
    auto diag_data = diag.mutable_data<T>(diag_dims, context.GetPlace());

    int64_t pos = std::abs(offset) * offset_stride;
    int64_t dim_size = ret_strides.size();
162
#if defined(__NVCC__) || defined(__HIPCC__)
L
Li Fuchen 已提交
163 164 165 166 167 168 169 170 171
    thrust::device_vector<int64_t> diag_vec(vectorize(dig_stride));
    const int64_t* diag_arr = thrust::raw_pointer_cast(diag_vec.data());
    thrust::device_vector<int64_t> ret_vec(ret_strides);
    const int64_t* ret_arr = thrust::raw_pointer_cast(ret_vec.data());
#else
    auto* diag_arr = dig_stride.Get();
    const auto* ret_arr = ret_strides.data();
#endif

H
hong 已提交
172 173 174 175
    // auto& dev_ctx = context.template device_context<DeviceContext>();
    paddle::platform::ForRange<DeviceContext> for_range(context, diag.numel());
    DiagonalFunctor<T> functor(
        input_data, diag_arr, ret_arr, pos, dim_size, diag_data);
L
Li Fuchen 已提交
176 177 178 179 180 181 182
    for_range(functor);
    return diag;
  } else {
    return {};
  }
}

H
hong 已提交
183 184 185 186 187 188 189 190 191 192 193 194
template <typename T, typename Context>
void TraceGradKernel(const Context& ctx,
                     const DenseTensor& out_grad,
                     const DenseTensor& x,
                     int offset,
                     int axis1,
                     int axis2,
                     DenseTensor* in_grad) {
  auto input_dims = in_grad->dims();
  auto input_stride = framework::stride(input_dims);
  auto output_dims = out_grad.dims();
  auto output_stride = framework::stride(output_dims);
L
Li Fuchen 已提交
195

H
hong 已提交
196 197
  auto* out_data = out_grad.data<T>();
  T* x_data = in_grad->mutable_data<T>(ctx.GetPlace());
L
Li Fuchen 已提交
198

H
hong 已提交
199
  paddle::operators::math::SetConstant<Context, T> set_zero;
L
Li Fuchen 已提交
200

H
hong 已提交
201 202 203 204 205 206 207 208 209
  set_zero(ctx, in_grad, static_cast<T>(0.0));
  auto dim1 = axis1;
  auto dim2 = axis2;
  auto dim1_ = dim1 < 0 ? input_dims.size() + dim1 : dim1;
  auto dim2_ = dim2 < 0 ? input_dims.size() + dim2 : dim2;
  auto len1 = input_dims[std::min(dim1_, dim2_)];
  auto len2 = input_dims[std::max(dim1_, dim2_)];
  auto stride1 = input_stride[std::min(dim1_, dim2_)];
  auto stride2 = input_stride[std::max(dim1_, dim2_)];
L
Li Fuchen 已提交
210

H
hong 已提交
211 212 213 214 215 216 217
  int offset_stride = 0;
  if (offset >= 0) {
    offset_stride = stride2;
    len2 -= offset;
  } else {
    offset_stride = stride1;
    len1 += offset;
L
Li Fuchen 已提交
218
  }
H
hong 已提交
219 220 221
  int64_t diag_size = len2 < len1 ? len2 : len1;
  int64_t pos = std::abs(offset) * offset_stride;
  if (diag_size > 0) {
222
#if defined(__NVCC__) || defined(__HIPCC__)
H
hong 已提交
223 224 225 226
    thrust::device_vector<int64_t> output_vec(vectorize(output_stride));
    const int64_t* output_arr = thrust::raw_pointer_cast(output_vec.data());
    thrust::device_vector<int64_t> input_vec(vectorize(input_stride));
    const int64_t* input_arr = thrust::raw_pointer_cast(input_vec.data());
L
Li Fuchen 已提交
227 228

#else
H
hong 已提交
229 230
    const auto* output_arr = output_stride.Get();
    const auto* input_arr = input_stride.Get();
L
Li Fuchen 已提交
231 232
#endif

H
hong 已提交
233 234 235 236 237 238 239 240 241 242 243
    paddle::platform::ForRange<Context> for_range(ctx, in_grad->numel());
    TraceGradFunctor<T> functor(out_data,
                                output_arr,
                                input_arr,
                                pos,
                                input_dims.size(),
                                dim1_,
                                dim2_,
                                diag_size,
                                x_data);
    for_range(functor);
L
Li Fuchen 已提交
244
  }
H
hong 已提交
245
}
L
Li Fuchen 已提交
246

H
hong 已提交
247
}  // namespace pten