backward.cc 23.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/backward.h"
#include <queue>

#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/grad_tensor_holder.h"
#include "paddle/fluid/eager/utils.h"
22 23
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"

#include "glog/logging.h"

namespace egr {

std::unordered_map<GradNodeBase*, int> getInDegreeMap(
    const std::queue<GradNodeBase*>& init_queue) {
  // Calculate in_degree for each node
  // We can completely remove this pass, if in_degree were set during forward
  // pass
  std::unordered_map<GradNodeBase*, int> node_in_degree_map;

  // Copy nodes
  std::queue<GradNodeBase*> queue = init_queue;
  std::unordered_set<GradNodeBase*> visited;
42 43
  size_t potential_startup_ops_cnt = queue.size();
  size_t cnt = 0;
44 45 46 47 48 49

  // Visit each node exactly once in any order
  while (!queue.empty()) {
    GradNodeBase* node = queue.front();
    queue.pop();

50 51 52 53 54 55 56
    if (cnt < potential_startup_ops_cnt) {
      if (!node_in_degree_map.count(node)) {
        node_in_degree_map[node] = 0;
      }
      cnt += 1;
    }

57 58 59 60 61
    if (visited.count(node)) {
      continue;
    }
    visited.insert(node);

J
Jiabin Yang 已提交
62 63 64 65 66
    PADDLE_ENFORCE_NOT_NULL(
        node,
        paddle::platform::errors::Fatal(
            "We got null node when we traverse the backward graph, and this "
            "should not happened please check your code and contact us."));
67 68 69 70 71
    // Find and append next nodes
    const std::vector<std::vector<Edge>>& edges = node->GetEdges();
    for (const auto& edge_list : edges) {
      for (const Edge& edge : edge_list) {
        GradNodeBase* next_node = edge.GetMutableGradNode().get();
72 73 74 75 76
        // Next node could be nullptr if it is leaf tensor with no
        // AccumulationNode attached
        // Or it could also originated from dispensable inputs
        if (!next_node) continue;

77 78 79 80 81 82 83 84 85 86 87
        // Update in_degree
        if (!node_in_degree_map.count(next_node))
          node_in_degree_map[next_node] = 0;
        node_in_degree_map[next_node]++;
        queue.push(next_node);
      }
    }
  }
  return node_in_degree_map;
}

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
// Remove some nodes those doesn't need to be
// stored in potential_stop_nodes、potential_startup_nodes
void UpdateGraphInfo(
    std::unordered_map<GradNodeBase*, AutogradMeta*>*
        target_nodes_inputmeta_map,
    std::unordered_map<GradNodeBase*, std::unordered_set<GradNodeBase*>>*
        depending_nodes,
    std::unordered_set<GradNodeBase*>* potential_stop_nodes,
    std::unordered_set<GradNodeBase*>* potential_startup_nodes) {
  // Updated potential_sotp_nodes by depending_nodes,
  // make sure the path from root to target_node is ok
  std::unordered_set<GradNodeBase*> _startup_ops;
  VLOG(6) << "Running in UpdateGraphInfo";
  std::queue<GradNodeBase*> queue;
  for (auto& target_nodes_inputmeta_pair : *target_nodes_inputmeta_map) {
    queue.emplace(target_nodes_inputmeta_pair.first);
  }

  while (!queue.empty()) {
    auto* target_node = queue.front();
    queue.pop();
    if (!(*depending_nodes)[target_node].empty()) {
      auto precedding_nodes = (*depending_nodes)[target_node];
      for (auto pre_nodes : precedding_nodes) {
        queue.emplace(pre_nodes);
        if (potential_stop_nodes->find(pre_nodes) !=
            potential_stop_nodes->end()) {
          potential_stop_nodes->erase(pre_nodes);
        }
      }
    } else {  // startup_ops have no precedding nodes
      VLOG(6) << "Emplace _startup_ops";
      _startup_ops.emplace(target_node);
    }
  }
  // Purify potential_startup_nodes again, remove some
  // potential startup_nodes that unreach to input target nodes
  if (!_startup_ops.empty()) {
    std::unordered_set<GradNodeBase*> potential_startup_nodes_to_be_erased;
    for (auto node : *potential_startup_nodes) {
      if (_startup_ops.count(node) == 0) {
        VLOG(6) << "Set up potential_startup_nodes_to_be_erased";
        potential_startup_nodes_to_be_erased.emplace(node);
      }
    }
    if (!potential_startup_nodes_to_be_erased.empty()) {
      for (auto node : potential_startup_nodes_to_be_erased) {
        VLOG(6) << "Erase nodes in potential_startup_nodes_to_be_erased";
        potential_startup_nodes->erase(node);
      }
    }
  }
}

// Get Graph Info Betweent input target gradnode and outputs,
// record depending_nodes、 potential_stop_nodes、potential_startup_nodes
void GetGraphInfoBetweenTargets(
    const std::queue<GradNodeBase*>& init_queue,
    std::unordered_map<GradNodeBase*, AutogradMeta*>*
        input_target_nodes_inputmeta_map,
    std::unordered_map</*child node*/ GradNodeBase*,
                       /*father nodes*/ std::unordered_set<GradNodeBase*>>*
        depending_nodes,
    std::unordered_set<GradNodeBase*>* potential_stop_nodes,
    std::unordered_set<GradNodeBase*>* potential_startup_nodes) {
  if (input_target_nodes_inputmeta_map->empty()) return;

  VLOG(6) << "Runing In GetGraphInfoBetweenTargets";

  // Calculate in_degree for each node
  std::unordered_map<GradNodeBase*, int> node_in_degree_map;

  // Copy nodes
  std::queue<GradNodeBase*> queue = init_queue;
  std::unordered_set<GradNodeBase*> visited;

  // Visit each node exactly once in any order
  while (!queue.empty()) {
    GradNodeBase* node = queue.front();
    queue.pop();

    if (visited.count(node)) {
      continue;
    }
    visited.insert(node);

    // Check node is target_nodes or not, if node is not target_node,
    // all the next_node will be marked in potential_stop_nodes
    bool is_potential_stop_nodes =
        input_target_nodes_inputmeta_map->count(node);

    // Find and append next nodes
    const std::vector<std::vector<Edge>>& edges = node->GetEdges();
    for (const auto& edge_list : edges) {
      for (const Edge& edge : edge_list) {
        GradNodeBase* next_node = edge.GetMutableGradNode().get();

        // Next node could be nullptr if it is leaf tensor with no
        // AccumulationNode attached
        // Or it could also originated from dispensable inputs
        if (!next_node) continue;

        // if node not in input_target_nodes,
        // all the next_nodes of current node will be inserted to
        // potential_stop_node
        if (is_potential_stop_nodes) {
          potential_stop_nodes->emplace(next_node);
        }

        // Update in_degree
        if (!node_in_degree_map.count(next_node))
          node_in_degree_map[next_node] = 0;
        node_in_degree_map[next_node]++;
201

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
        // Record depending relationship
        (*depending_nodes)[next_node].emplace(node);
        queue.push(next_node);
      }
    }
  }
  // Update Graph Info, remove some stop_node in potential_stop_nodes
  UpdateGraphInfo(input_target_nodes_inputmeta_map, depending_nodes,
                  potential_stop_nodes, potential_startup_nodes);
}

void GetTargetNodesInfo(const std::vector<paddle::experimental::Tensor>& inputs,
                        std::unordered_map<GradNodeBase*, AutogradMeta*>*
                            target_nodes_inputmeta_map) {
  VLOG(6) << "Running in GetTargetNodesInfo";
  if (!inputs.empty()) {
    VLOG(6) << "Inputs are not empty";
    size_t num_inputs = inputs.size();
    for (size_t i = 0; i < num_inputs; i++) {
      AutogradMeta* auto_grad_meta =
          EagerUtils::unsafe_autograd_meta(inputs[i]);
      auto target_node = auto_grad_meta->GetMutableGradNode().get();

      PADDLE_ENFORCE_NOT_NULL(target_node,
                              paddle::platform::errors::Fatal(
                                  "There is no grad op for input:%d or it's"
                                  "stop_gradient=True",
                                  i));
      (*target_nodes_inputmeta_map)[target_node] = auto_grad_meta;
    }
  }
}

std::vector<paddle::experimental::Tensor> GetResults(
    const std::vector<paddle::experimental::Tensor>& inputs,
    std::unordered_map<GradNodeBase*, paddle::experimental::Tensor>*
        results_map,
    bool allow_unused, bool create_graph) {
  VLOG(6) << "Running in GetResults";
  if (inputs.empty()) return {};

  std::vector<paddle::experimental::Tensor> results;
  results.reserve(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
    auto& input = inputs[i];
    AutogradMeta* auto_grad_meta = EagerUtils::unsafe_autograd_meta(input);
    auto target_node = auto_grad_meta->GetMutableGradNode().get();

    auto iter = results_map->find(target_node);
    if (iter != results_map->end()) {
      // set StopGradient = !create_graph
      AutogradMeta* tensor_auto_grad_meta =
          EagerUtils::autograd_meta(&(iter->second));
      tensor_auto_grad_meta->SetStopGradient(!create_graph);
      results.emplace_back(iter->second);
    } else {
      PADDLE_ENFORCE_EQ(allow_unused, true,
                        paddle::platform::errors::InvalidArgument(
                            "The %d-th input does not appear in the backward "
                            "graph. Please check the input variable or set "
                            "allow_unused=True to get None result.",
                            i));
      results.emplace_back();
    }
  }
  return results;
}

// Enforce GradNode has TensorWrappers as Input
void EnforceGradNodeHasInput(GradNodeBase* node) {
  VLOG(6) << "Running in EnforceGradNodeHasInput";
  PADDLE_ENFORCE_NE(
      node->IsTensorWrappersCleared(), true,
      paddle::platform::errors::Fatal(
          "The TensorWrappers of %s do not exist. This may be because:\n"
          "You calculate backward twice for the same subgraph without "
          "setting retain_graph=True. Please set retain_graph=True in the "
          "first backward/grad call.\n",
          node->name()));
}

// Purify potential_startup_nodes, remove nodes those are the same as
// input_target_nodes
void PurifyPotentialStartUpNodes(
    std::unordered_set<GradNodeBase*>* potential_startup_nodes,
    std::unordered_map<GradNodeBase*, AutogradMeta* /* InputMeta */>*
        input_target_nodes_inputmeta_map) {
  VLOG(6) << "Running in PurifyPotentialStartUpNodes";
  if (input_target_nodes_inputmeta_map->empty()) return;
  std::unordered_set<GradNodeBase*> potential_startup_nodes_to_be_erased;
  for (auto startup_op : *potential_startup_nodes) {
    auto iter = input_target_nodes_inputmeta_map->find(startup_op);
    if (iter != input_target_nodes_inputmeta_map->end()) {
      potential_startup_nodes_to_be_erased.emplace(iter->first);
    }
  }
  if (!potential_startup_nodes_to_be_erased.empty()) {
    for (auto nodes : potential_startup_nodes_to_be_erased) {
      potential_startup_nodes->erase(nodes);
    }
  }
}

std::vector<paddle::experimental::Tensor> RunBackward(
    const std::vector<paddle::experimental::Tensor>& tensors,  // output
    const std::vector<paddle::experimental::Tensor>& grad_tensors,
    bool retain_graph, bool create_graph = false,
    const std::vector<paddle::experimental::Tensor>& inputs = {},
    bool allow_unused = false,
    const std::vector<paddle::experimental::Tensor>& no_grad_vars = {}) {
313 314 315 316 317
  VLOG(6) << "Start Backward";
  // *Gradient Hook should happen at node-level
  // *Inplace version check should perform at node-level
  // *Cross-batch accumulation happens at forward pass

318 319 320 321 322
  std::unordered_map<GradNodeBase*, AutogradMeta*>
      no_grad_var_nodes_inputmeta_map;
  // Get no_grad_vars's GradNodes and InputMeta Info
  GetTargetNodesInfo(no_grad_vars, &no_grad_var_nodes_inputmeta_map);

323 324 325 326 327 328
  /* --- Initialization --- */
  // 1. Init queue with starting nodes
  // 2. Prepare initial input buffers
  std::queue<GradNodeBase*> queue;
  std::unordered_map<GradNodeBase*, std::unique_ptr<GradTensorHolder>>
      node_input_buffers_dict;
329
  std::unordered_set<GradNodeBase*> potential_startup_nodes;
330
  for (size_t i = 0; i < tensors.size(); i++) {
331
    const paddle::experimental::Tensor& tensor = tensors[i];
332 333 334 335 336 337 338 339

    AutogradMeta* auto_grad_meta = EagerUtils::unsafe_autograd_meta(tensor);
    // Get grad input info from target tensors
    auto input_info = auto_grad_meta->OutRankInfo();

    VLOG(2) << "Out Rank of Tensor is slot: " << input_info.first
            << ", rank: " << input_info.second;
    // Get target GradNodeBase from target tensors
340 341 342 343 344 345 346 347 348 349 350
    auto shared_grad_node = auto_grad_meta->GetMutableGradNode();

    if (shared_grad_node == nullptr || shared_grad_node.get() == nullptr ||
        auto_grad_meta->StopGradient()) {
      VLOG(3) << "Skip auto grad since there is no grad op for var or loss is "
                 "stop_gradient=True: "
              << tensor.name();
      continue;
    }

    GradNodeBase* grad_node = shared_grad_node.get();
351 352 353

    // Prepare GradTensorHolder
    if (!node_input_buffers_dict.count(grad_node)) {
354 355
      VLOG(6) << "Create Value for grad input tensor " << i
              << " of grad node: " << grad_node->name();
356 357 358 359 360 361 362 363 364 365 366 367 368
      node_input_buffers_dict[grad_node] =
          std::make_unique<GradTensorHolder>(grad_node->InputMeta());
    }

    if (grad_tensors.size() > 0) {
      PADDLE_ENFORCE(
          grad_tensors.size() == tensors.size(),
          paddle::platform::errors::Fatal(
              "Detected size mismatch between tensors and grad_tensors"
              "grad_tensors should either have "
              "size = 0 or same size as tensors"));
      // Feed given tensor if it's provided
      VLOG(6) << "Fill grad input tensor " << i << "with give grad tensor";
369 370 371 372

      if (grad_tensors[i].is_initialized()) {
        // Deep copy
        paddle::experimental::Tensor tmp_tensor;
373
        tmp_tensor.copy_(grad_tensors[i], grad_tensors[i].inner_place(), true);
374 375 376 377 378 379
        node_input_buffers_dict[grad_node]->add(input_info.first,
                                                input_info.second, tmp_tensor);
      } else {
        node_input_buffers_dict[grad_node]->add(
            input_info.first, input_info.second, grad_tensors[i]);
      }
380 381 382 383 384 385 386 387 388 389 390 391

    } else {
      VLOG(6) << "Fill grad input tensor " << i << " with 1.0";
      // Initialize tensor with 1.0
      // Forward Tensor "tensor" is passed to indicate tensortype, datatype and
      // dims
      // GradTensorHolder will initialize another tensor with same tensortype,
      // datatype and dims but filled with 1.0
      node_input_buffers_dict[grad_node]->add(
          input_info.first, input_info.second, tensor, true /*fill_one=true*/);
    }

392
    // Prepare queue, potential startup_nodes
393
    queue.push(grad_node);
394
    potential_startup_nodes.emplace(grad_node);
395 396 397 398 399 400 401
  }

  VLOG(6) << "Update In degree Map for backward";
  // 3. Compute in_degree for each node
  std::unordered_map<GradNodeBase*, int> node_in_degree_map =
      getInDegreeMap(queue);

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
  // Get input's GradNodes and InputMeta Info
  std::unordered_map<GradNodeBase*, AutogradMeta* /* InputMeta */>
      input_target_nodes_inputmeta_map;
  GetTargetNodesInfo(inputs, &input_target_nodes_inputmeta_map);

  // Purify potential_startup_ops, remove those nodes that are the same as
  // input_target_nodes
  PurifyPotentialStartUpNodes(&potential_startup_nodes,
                              &input_target_nodes_inputmeta_map);

  // Get Graph Info Betweent input target gradnode and outputs
  // Record the depending_nodes and potential_stop_nodes
  std::unordered_map<GradNodeBase* /* child node */,
                     std::unordered_set<GradNodeBase*> /* father node */>
      depending_nodes;
  std::unordered_set<GradNodeBase*> potential_stop_nodes;
  // std::unordered_set<GradNodeBase*> startup_ops;

  GetGraphInfoBetweenTargets(queue, &input_target_nodes_inputmeta_map,
                             &depending_nodes, &potential_stop_nodes,
                             &potential_startup_nodes);

  // ready_queue store all startup nodes
  std::queue<GradNodeBase*> ready_queue;
  // startup op's indegree should be 0
  for (auto node : potential_startup_nodes) {
    if (node_in_degree_map[node] == 0) {
      ready_queue.emplace(node);
    }
  }

  VLOG(1) << " startup_ops' size is :" << ready_queue.size();

  std::unordered_map<GradNodeBase*, paddle::experimental::Tensor> results_map;

  // read_queue is empty only when 1.input equals to output. 2.input can not
  // reach to output.
  if (ready_queue.size() == 0) {
    for (auto input_target_node : input_target_nodes_inputmeta_map) {
      // out rank_info of forward op
      auto rank_info = input_target_node.second->OutRankInfo();
      if (node_input_buffers_dict[input_target_node.first]) {
        auto& target_result =
            node_input_buffers_dict[input_target_node.first]
                ->Buffers()[rank_info.first][rank_info.second];
        // save the target result
        results_map[input_target_node.first] = target_result;
      }
    }
  }

453 454 455
  /* --- Topological Visit --- */
  // 1. Pop queue
  // 2. Run node
456
  //    |- Check and capture target result
457 458 459 460
  //    |- node(grads)
  //    |- Prepare for next node
  // 3. Update queue
  VLOG(6) << "Run Backward";
461 462 463 464
  while (!ready_queue.empty()) {
    GradNodeBase* node = ready_queue.front();
    VLOG(6) << "Running GradNode:" << node->name();
    ready_queue.pop();
465

466 467 468 469
    paddle::platform::RecordEvent node_record_event(
        std::string(typeid(*node).name()) + " grad_node",
        paddle::platform::TracerEventType::Operator, 1);

470 471 472 473
    // Run node: This is where Hook happens
    PADDLE_ENFORCE(
        node_input_buffers_dict.count(node),
        paddle::platform::errors::Fatal(
474
            "Unable to find next node in the GradTensorHolder \n"
475 476 477 478
            "Trying to run Node without configuring its GradTensorHolder"));

    std::unique_ptr<GradTensorHolder> node_input_buffer =
        std::move(node_input_buffers_dict[node]);
479

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
    // get target grad_var from node_input_buffer by inputmeta
    if (input_target_nodes_inputmeta_map.find(node) !=
        input_target_nodes_inputmeta_map.end()) {
      VLOG(6) << "Get target result by by inputmeta";
      // out rank_info of forward op
      auto rank_info = input_target_nodes_inputmeta_map[node]->OutRankInfo();
      // rank_info is a pair, first means slot_id, second means rank.
      auto& target_result =
          node_input_buffer->Buffers()[rank_info.first][rank_info.second];
      // save the target result
      results_map[node] = target_result;
    }

    // no_grad_vars
    if (no_grad_var_nodes_inputmeta_map.find(node) !=
        no_grad_var_nodes_inputmeta_map.end()) {
      VLOG(6) << "Change the input buffer[slot][rank] by Zeros";
      auto rank_info = no_grad_var_nodes_inputmeta_map[node]->OutRankInfo();
      node_input_buffer->SetBufferSlotRankZeros(rank_info.first,
                                                rank_info.second);
    }

    VLOG(6) << "Running GradNode:" << node->name();

    // check input
    EnforceGradNodeHasInput(node);

507
    VLOG(6) << "Run Backward Kernel with GradTensorHolder";
508
    // Run Pre Backward Node and get outputs
509
    std::vector<std::vector<paddle::experimental::Tensor>> grad_output_tensors =
510 511 512 513 514 515 516 517 518
        (*node)(node_input_buffer->Buffers(), create_graph);

    // retain_grad or not
    if (!retain_graph) {
      VLOG(6)
          << "retain_graph is false, need to clear the TensorWrapper of nodes.";
      node->ClearTensorWrappers();
    }

519 520 521 522 523 524 525 526 527
    // TODO(jiabin): Should we erase it or find a more efficient way.
    node_input_buffers_dict.erase(node);

    // Prepare GradTensorHolder for next node
    const std::vector<std::vector<Edge>>& edges = node->GetEdges();

    PADDLE_ENFORCE(edges.size() == grad_output_tensors.size() || edges.empty(),
                   paddle::platform::errors::Fatal(
                       "Number of edges should be either empty ( for leaf node "
528 529 530
                       ") or the same as number of output grad tensors, but we "
                       "got edges size is: %d, grad_output size is: %d",
                       edges.size(), grad_output_tensors.size()));
531 532 533 534 535 536 537 538

    for (size_t i = 0; i < edges.size(); i++) {
      for (size_t j = 0; j < edges[i].size(); j++) {
        const Edge& edge = edges[i][j];
        auto edge_rank = edge.GetEdgeRankInfo();
        // Since we make edge has as same rank as bwd outputs, we indexing them
        // with
        // the same rank(i, j)
539
        auto next_node_shared = edge.GetMutableGradNode();
540

541 542 543
        // Next node could be nullptr if it is leaf tensor with no
        // AccumulationNode attached
        // Or it could also originated from dispensable inputs
544 545 546 547 548 549 550 551 552 553 554
        if (!next_node_shared || !next_node_shared.get() ||
            grad_output_tensors[i].empty()) {
          continue;
        }
        PADDLE_ENFORCE_LT(
            j, grad_output_tensors[i].size(),
            paddle::platform::errors::Fatal(
                "Rank of grad_output_tensors should be less than "
                "grad_output_tensors[i].size(), which is: %d. This error may "
                "indicate autoprune or autograd api error. ",
                grad_output_tensors.size()));
555 556
        paddle::experimental::Tensor& grad_output_tensor =
            grad_output_tensors[i][j];
557 558 559

        if ((!grad_output_tensor.defined() ||
             !grad_output_tensor.initialized())) {
560 561
          VLOG(6) << "We get grad_output_tensor with slot: " << i
                  << ", rank: " << j << " as uninitialized or undefined tensor";
562 563 564 565 566 567
        }
        VLOG(6) << "Get Edge and grad_output_tensor with slot: " << i
                << ", rank: " << j
                << " 's name is: " << grad_output_tensor.name();

        auto* next_node = next_node_shared.get();
568
        if (!node_input_buffers_dict.count(next_node)) {
569 570 571
          const auto& input_meta = next_node->InputMeta();
          auto grad_tensor_holder =
              std::make_unique<GradTensorHolder>(input_meta);
572 573
          VLOG(6) << "Construct GradTensorHolder for grad node: "
                  << next_node->name();
574
          node_input_buffers_dict[next_node] = std::move(grad_tensor_holder);
575 576 577 578 579 580 581 582
        }
        VLOG(6) << "Sum grad inputs for edge slot: " << edge_rank.first
                << ", rank: " << edge_rank.second;
        node_input_buffers_dict[next_node]->add(
            edge_rank.first, edge_rank.second, grad_output_tensor);

        // Update queue
        node_in_degree_map[next_node]--;
583

584 585 586 587 588 589
        PADDLE_ENFORCE(
            node_in_degree_map[next_node] >= 0,
            paddle::platform::errors::Fatal(
                "Detected in-degree value smaller than zero. For Node: %s"
                "Node's in-degree cannot be negative",
                next_node->name()));
590 591 592 593 594

        bool is_potential_stop_node = potential_stop_nodes.count(next_node);

        if (node_in_degree_map[next_node] == 0 && !is_potential_stop_node) {
          ready_queue.emplace(std::move(next_node));
595 596 597 598
        }
      }
    }
  }
599 600

  return GetResults(inputs, &results_map, allow_unused, create_graph);
601 602
}

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
void Backward(
    const std::vector<paddle::experimental::Tensor>& tensors,  // output
    const std::vector<paddle::experimental::Tensor>& grad_tensors,
    bool retain_graph) {
  VLOG(6) << "Run in Backward";
  paddle::platform::RecordEvent backward_record_event(
      "backward", paddle::platform::TracerEventType::Operator, 1);
  RunBackward(tensors, grad_tensors, retain_graph);
}

std::vector<paddle::experimental::Tensor> Grad(
    const std::vector<paddle::experimental::Tensor>& tensors,  // output
    const std::vector<paddle::experimental::Tensor>& inputs,
    const std::vector<paddle::experimental::Tensor>& grad_tensors,
    bool retain_graph, bool create_graph, bool only_inputs, bool allow_unused,
    const std::vector<paddle::experimental::Tensor>& no_grad_vars) {
  VLOG(6) << "Run in Grad";
  return RunBackward(tensors, grad_tensors, retain_graph, create_graph, inputs,
                     allow_unused, no_grad_vars);
}
623
}  // namespace egr