test_dyn_rnn.py 11.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import paddle.fluid as fluid
18
import paddle
19 20 21
import unittest
import numpy

22 23 24 25 26 27
from paddle.fluid.layers.control_flow import lod_rank_table
from paddle.fluid.layers.control_flow import max_sequence_len
from paddle.fluid.layers.control_flow import lod_tensor_to_array
from paddle.fluid.layers.control_flow import array_to_lod_tensor
from paddle.fluid.layers.control_flow import shrink_memory

28 29 30 31

class TestDynRNN(unittest.TestCase):
    def setUp(self):
        self.word_dict = paddle.dataset.imdb.word_dict()
32
        self.BATCH_SIZE = 2
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
        self.train_data = paddle.batch(
            paddle.dataset.imdb.train(self.word_dict),
            batch_size=self.BATCH_SIZE)

    def test_plain_while_op(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()

        with fluid.program_guard(main_program, startup_program):
            sentence = fluid.layers.data(
                name='word', shape=[1], dtype='int64', lod_level=1)
            sent_emb = fluid.layers.embedding(
                input=sentence, size=[len(self.word_dict), 32], dtype='float32')

            label = fluid.layers.data(name='label', shape=[1], dtype='float32')

49
            rank_table = lod_rank_table(x=sent_emb)
50

51
            sent_emb_array = lod_tensor_to_array(x=sent_emb, table=rank_table)
52

53
            seq_len = max_sequence_len(rank_table=rank_table)
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            i.stop_gradient = False

            boot_mem = fluid.layers.fill_constant_batch_size_like(
                input=fluid.layers.array_read(
                    array=sent_emb_array, i=i),
                value=0,
                shape=[-1, 100],
                dtype='float32')
            boot_mem.stop_gradient = False

            mem_array = fluid.layers.array_write(x=boot_mem, i=i)

            cond = fluid.layers.less_than(x=i, y=seq_len)
            cond.stop_gradient = False
            while_op = fluid.layers.While(cond=cond)
            out = fluid.layers.create_array(dtype='float32')

            with while_op.block():
                mem = fluid.layers.array_read(array=mem_array, i=i)
                ipt = fluid.layers.array_read(array=sent_emb_array, i=i)

76
                mem = shrink_memory(x=mem, i=i, table=rank_table)
77 78

                hidden = fluid.layers.fc(input=[mem, ipt], size=100, act='tanh')
79

80 81 82 83 84
                fluid.layers.array_write(x=hidden, i=i, array=out)
                fluid.layers.increment(x=i, in_place=True)
                fluid.layers.array_write(x=hidden, i=i, array=mem_array)
                fluid.layers.less_than(x=i, y=seq_len, cond=cond)

85
            all_timesteps = array_to_lod_tensor(x=out, table=rank_table)
86
            last = fluid.layers.sequence_last_step(input=all_timesteps)
87 88 89
            logits = fluid.layers.fc(input=last, size=1, act=None)
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=logits, label=label)
Y
Yu Yang 已提交
90
            loss = fluid.layers.mean(loss)
91 92 93 94 95 96 97 98 99 100 101 102 103 104
            sgd = fluid.optimizer.SGD(1e-4)
            sgd.minimize(loss=loss)
        cpu = fluid.CPUPlace()
        exe = fluid.Executor(cpu)
        exe.run(startup_program)
        feeder = fluid.DataFeeder(feed_list=[sentence, label], place=cpu)

        data = next(self.train_data())
        val = exe.run(main_program, feed=feeder.feed(data),
                      fetch_list=[loss])[0]
        self.assertEqual((1, ), val.shape)
        print(val)
        self.assertFalse(numpy.isnan(val))

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    def test_train_dyn_rnn(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            sentence = fluid.layers.data(
                name='word', shape=[1], dtype='int64', lod_level=1)
            sent_emb = fluid.layers.embedding(
                input=sentence, size=[len(self.word_dict), 32], dtype='float32')

            rnn = fluid.layers.DynamicRNN()

            with rnn.block():
                in_ = rnn.step_input(sent_emb)
                mem = rnn.memory(shape=[100], dtype='float32')
                out_ = fluid.layers.fc(input=[in_, mem], size=100, act='tanh')
                rnn.update_memory(mem, out_)
                rnn.output(out_)

123
            last = fluid.layers.sequence_last_step(input=rnn())
124 125 126 127
            logits = fluid.layers.fc(input=last, size=1, act=None)
            label = fluid.layers.data(name='label', shape=[1], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=logits, label=label)
Y
Yu Yang 已提交
128
            loss = fluid.layers.mean(loss)
129 130 131 132 133 134 135 136 137 138 139
            sgd = fluid.optimizer.Adam(1e-3)
            sgd.minimize(loss=loss)

        cpu = fluid.CPUPlace()
        exe = fluid.Executor(cpu)
        exe.run(startup_program)
        feeder = fluid.DataFeeder(feed_list=[sentence, label], place=cpu)
        data = next(self.train_data())
        loss_0 = exe.run(main_program,
                         feed=feeder.feed(data),
                         fetch_list=[loss])[0]
140
        for _ in range(100):
141 142 143 144 145 146
            val = exe.run(main_program,
                          feed=feeder.feed(data),
                          fetch_list=[loss])[0]
        # loss should be small after 100 mini-batch
        self.assertLess(val[0], loss_0[0])

C
chengduo 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    # this unit test is just used to the two layer nested dyn_rnn.
    def test_train_nested_dyn_rnn(self):
        word_dict = [i for i in range(30)]

        def fake_reader():
            seq_len, label = [[2, 2]], [0, 1]
            data = []
            for ele in seq_len:
                for j in ele:
                    data.append([numpy.random.randint(30) \
                                 for _ in range(j)])

            while True:
                yield data, label

        train_data = paddle.batch(fake_reader, batch_size=2)

        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            sentence = fluid.layers.data(
                name='word', shape=[1], dtype='int64', lod_level=2)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32', lod_level=1)

            rnn = fluid.layers.DynamicRNN()
            with rnn.block():
                in_ = rnn.step_input(sentence)
                sent_emb = fluid.layers.embedding(
                    input=in_, size=[len(word_dict), 32], dtype='float32')
                out_ = fluid.layers.fc(input=sent_emb, size=100, act='tanh')

                rnn1 = fluid.layers.DynamicRNN()
                with rnn1.block():
                    in_1 = rnn1.step_input(out_)
                    out_1 = fluid.layers.fc(input=[in_1], size=100, act='tanh')
                    rnn1.output(out_1)

                last = fluid.layers.sequence_last_step(input=rnn1())
                rnn.output(last)

            last = rnn()
            logits = fluid.layers.fc(input=last, size=1, act=None)
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=logits, label=label)
            loss = fluid.layers.mean(loss)
            sgd = fluid.optimizer.SGD(1e-3)
            #sgd = fluid.optimizer.Adam(1e-3)
            sgd.minimize(loss=loss)

        cpu = fluid.CPUPlace()
        exe = fluid.Executor(cpu)
        exe.run(startup_program)
        feeder = fluid.DataFeeder(feed_list=[sentence, label], place=cpu)
        data = next(train_data())
        val = exe.run(main_program, feed=feeder.feed(data),
                      fetch_list=[loss])[0]

        for _ in range(100):
            val = exe.run(main_program,
                          feed=feeder.feed(data),
                          fetch_list=[loss])[0]
            print(val)

    # this unit test is just used to the two layer nested dyn_rnn.
    def test_train_nested_dyn_rnn2(self):
        word_dict = [i for i in range(30)]

        def fake_reader():
            seq_len, label = [[2, 2]], [0, 1]
            data = []
            for ele in seq_len:
                for j in ele:
                    data.append([numpy.random.randint(30) \
                                 for _ in range(j)])

            while True:
                yield data, label

        train_data = paddle.batch(fake_reader, batch_size=2)
        hidden_size = 32
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            sentence = fluid.layers.data(
                name='word', shape=[1], dtype='int64', lod_level=2)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32', lod_level=1)

            rnn = fluid.layers.DynamicRNN()
            with rnn.block():
                in_ = rnn.step_input(sentence)
                sent_emb = fluid.layers.embedding(
                    input=in_,
                    size=[len(word_dict), hidden_size],
                    dtype='float32')
                input_forward_proj = fluid.layers.fc(input=sent_emb,
                                                     size=hidden_size * 4,
                                                     act=None,
                                                     bias_attr=False)
                forward, _ = fluid.layers.dynamic_lstm(
                    input=input_forward_proj,
                    size=hidden_size * 4,
                    use_peepholes=False)

                rnn1 = fluid.layers.DynamicRNN()
                with rnn1.block():
                    in_1 = rnn1.step_input(forward)
                    out_1 = fluid.layers.fc(input=[in_1], size=100, act='tanh')
                    rnn1.output(out_1)

                last = fluid.layers.sequence_last_step(input=rnn1())
                rnn.output(last)

            last = rnn()
            logits = fluid.layers.fc(input=last, size=1, act=None)
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=logits, label=label)
            loss = fluid.layers.mean(loss)
            sgd = fluid.optimizer.SGD(1e-3)
            #sgd = fluid.optimizer.Adam(1e-3)
            sgd.minimize(loss=loss)

        cpu = fluid.CPUPlace()
        exe = fluid.Executor(cpu)
        exe.run(startup_program)
        feeder = fluid.DataFeeder(feed_list=[sentence, label], place=cpu)
        data = next(train_data())
        val = exe.run(main_program, feed=feeder.feed(data),
                      fetch_list=[loss])[0]

        for _ in range(100):
            val = exe.run(main_program,
                          feed=feeder.feed(data),
                          fetch_list=[loss])[0]

283 284 285

if __name__ == '__main__':
    unittest.main()