tensor_util.cc 58.4 KB
Newer Older
Y
Yang Yu 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yu 已提交
6

7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14

C
chengduoZH 已提交
15 16
#include <algorithm>
#include <limits>
C
chengduo 已提交
17
#include <memory>
18
#include <string>
C
chengduo 已提交
19
#include <utility>
C
chengduoZH 已提交
20
#include <vector>
21

22
#include "paddle/fluid/framework/convert_utils.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/data_type.h"
S
Steffy-zxf 已提交
24
#include "paddle/fluid/framework/tensor_util.h"
25
#include "paddle/fluid/platform/complex.h"
26
#include "paddle/fluid/platform/profiler/event_tracing.h"
27

28
#include "paddle/phi/core/dense_tensor.h"
29

30
#ifdef PADDLE_WITH_MKLDNN
31
#include "dnnl_debug.h"  // NOLINT
32
#endif
Y
Yang Yu 已提交
33 34 35

namespace paddle {
namespace framework {
Y
Yi Wang 已提交
36

37 38 39
template <typename TENSOR>
void TensorCopyImpl(const TENSOR& src, const platform::Place& dst_place,
                    const platform::DeviceContext& ctx, TENSOR* dst) {
40 41
  if (&src == dst) {
    auto src_copy = src;
42
    TensorCopyImpl(src_copy, dst_place, ctx, dst);
43 44 45
    return;
  }

M
minqiyang 已提交
46 47
  VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to "
          << dst_place;
Y
Yi Wang 已提交
48 49 50 51
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
  auto src_place = src.place();
52
  auto src_ptr = src.data();
53 54 55 56 57 58
#ifdef PADDLE_WITH_MKLDNN
  dst->set_format(src.format());
  // oneDNN tensors due to padding may be of bigger size
  // than numel()*size(type())
  auto dst_ptr =
      src.layout() == DataLayout::kMKLDNN
59 60
          ? dst->mutable_data(dst_place, src.dtype(), src.memory_size())
          : dst->mutable_data(dst_place, src.dtype());
61
#else
62
  auto dst_ptr = dst->mutable_data(dst_place, src.dtype());
63
#endif
64 65 66 67 68
  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data async from " << src_place << " to "
            << dst_place;
    return;
  }
69
  VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
70

71 72 73
#ifdef PADDLE_WITH_MKLDNN
  auto size = src.layout() == DataLayout::kMKLDNN
                  ? src.memory_size()
74
                  : src.numel() * framework::DataTypeSize(src.dtype());
75
#else
76
  auto size = src.numel() * framework::DataTypeSize(src.dtype());
77
#endif
Y
Yi Wang 已提交
78 79

  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
80
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
Y
Yi Wang 已提交
81
  }
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  } else if (platform::is_cpu_place(src_place) &&  // NOLINT
             platform::is_custom_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  } else if (platform::is_custom_place(src_place) &&  // NOLINT
             platform::is_custom_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  }
#endif
105 106 107
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
108
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
109 110
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
111
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
112 113 114 115 116 117 118
  } else if (platform::is_xpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
119
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
120 121 122 123 124
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
125 126 127 128 129 130
#ifdef PADDLE_WITH_ASCEND_CL
  // TODO(zhiqiu): handle different condition like CUDA code below
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
131
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
132 133 134
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
135 136 137 138 139
    //  1. cpu tensor -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(src.dims());
    auto npu_pinned_ptr =
140
        npu_pinned_tensor.mutable_data(npu_pinned_place, src.dtype());
141
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);
142 143 144

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
145
        dst_place, dst_ptr, npu_pinned_place, npu_pinned_ptr, size,
146 147 148 149 150 151 152 153
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
154
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
155 156 157
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
158 159 160 161 162 163 164 165 166 167
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
168
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
169
  }
W
WangXi 已提交
170 171
  else if (platform::is_npu_pinned_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {         /* npu_pinned->npu */
172 173
    auto src_npu_pinned_place = src_place;
    auto dst_npu_place = dst_place;
W
WangXi 已提交
174 175 176 177 178 179
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_npu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from NPU Pinned memory to NPU memory, current "
                          "device context place should be NPU."));
180
    auto ctx_npu_place = ctx_place;
W
WangXi 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193
    PADDLE_ENFORCE_EQ(dst_npu_place, ctx_npu_place,
                      platform::errors::PreconditionNotMet(
                          "The target NPU device and current device context do "
                          "not match. The target NPU device number is %d, but "
                          "device context NPU number is %d.",
                          dst_npu_place.device, ctx_npu_place.device));
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
    memory::Copy(dst_npu_place, dst_ptr, src_npu_pinned_place, src_ptr, size,
                 stream);
  }
  else if (platform::is_npu_place(src_place) &&        // NOLINT
           platform::is_npu_pinned_place(dst_place)) { /* npu->npu_pinned */
194 195
    auto src_npu_place = src_place;
    auto dst_npu_pinned_place = dst_place;
W
WangXi 已提交
196 197 198 199 200 201
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_npu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from NPU memory to NPU Pinned memory, current "
                          "device context place should be NPU."));
202
    auto ctx_npu_place = ctx_place;
W
WangXi 已提交
203 204 205 206 207 208 209 210 211 212 213
    PADDLE_ENFORCE_EQ(src_place, ctx_npu_place,
                      platform::errors::PreconditionNotMet(
                          "The source NPU device and current device context do "
                          "not match. The source NPU device number is %d, but "
                          "device context NPU number is %d.",
                          src_npu_place.device, ctx_npu_place.device));
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
    memory::Copy(dst_npu_pinned_place, dst_ptr, src_npu_place, src_ptr, size,
                 stream);
  }
214 215 216 217 218
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
219
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
220 221
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
222
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
223
  }
224
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
Y
Yi Wang 已提交
225
           platform::is_cpu_place(dst_place)) {
226
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
227 228 229
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
230
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
231 232 233
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
234 235
    auto src_gpu_place = src_place;
    auto dst_cpu_place = dst_place;
Y
Yi Wang 已提交
236
    auto ctx_place = ctx.GetPlace();
237 238 239 240 241
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
242
    auto ctx_gpu_place = ctx_place;
243 244 245 246 247
    PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place,
                      platform::errors::Unavailable(
                          "Source place and context place do not match, source "
                          "place is %s, context place is %s.",
                          src_gpu_place, ctx_gpu_place));
248
    auto stream =
F
fengjiayi 已提交
249
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
250
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
251 252 253
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
254 255
    auto src_cpu_place = src_place;
    auto dst_gpu_place = dst_place;
Y
Yi Wang 已提交
256
    auto ctx_place = ctx.GetPlace();
257 258 259 260 261
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
262
    auto ctx_gpu_place = ctx_place;
263 264 265 266 267
    PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place,
                      platform::errors::Unavailable(
                          "Destination place and context place do not match, "
                          "destination place is %s, context place is %s.",
                          dst_gpu_place, ctx_gpu_place));
268
    auto stream =
F
fengjiayi 已提交
269
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
270
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
271 272 273
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
274 275
    auto src_gpu_place = src_place;
    auto dst_cuda_pinned_place = dst_place;
276 277 278 279 280 281
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from GPU memory to CUDA Pinned memory, current "
                          "device context place should be GPU."));
282
    auto ctx_gpu_place = ctx_place;
283 284 285 286 287 288 289 290 291 292
    PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place,
                      platform::errors::PreconditionNotMet(
                          "The source GPU device and current device context do "
                          "not match. The source GPU device number is %d, but "
                          "device context GPU number is %d.",
                          src_gpu_place.device, ctx_gpu_place.device));
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
    memory::Copy(dst_cuda_pinned_place, dst_ptr, src_gpu_place, src_ptr, size,
                 stream);
293 294 295
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
296 297
    auto src_cuda_pinned_place = src_place;
    auto dst_gpu_place = dst_place;
298 299 300 301 302 303
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from CUDA Pinned memory to GPU memory, current "
                          "device context place should be GPU."));
304
    auto ctx_gpu_place = ctx_place;
305 306 307 308 309 310 311 312 313 314
    PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place,
                      platform::errors::PreconditionNotMet(
                          "The target GPU device and current device context do "
                          "not match. The target GPU device number is %d, but "
                          "device context GPU number is %d.",
                          dst_gpu_place.device, ctx_gpu_place.device));
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
    memory::Copy(dst_gpu_place, dst_ptr, src_cuda_pinned_place, src_ptr, size,
                 stream);
315 316 317
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
318 319
    auto src_gpu_place = src_place;
    auto dst_gpu_place = dst_place;
Y
Yi Wang 已提交
320
    auto ctx_place = ctx.GetPlace();
321 322 323 324 325
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
326
    auto stream =
F
fengjiayi 已提交
327
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
C
chengduo 已提交
328 329 330 331 332 333 334
    if (platform::is_same_place(src_place, dst_place)) {
      memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                   stream);
    } else {
      if (platform::is_same_place(ctx_place, src_place)) {
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
C
chengduo 已提交
335
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
336
      } else if (platform::is_same_place(ctx_place, dst_place)) {
C
chengduo 已提交
337
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
338 339 340
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
      } else {
341 342
        PADDLE_THROW(platform::errors::Unavailable(
            "Context place dose not match the source and destination place."));
C
chengduo 已提交
343 344
      }
    }
345 346
  }
  else {  // NOLINT
347 348
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
Y
Yi Wang 已提交
349 350
  }
#endif
351 352 353
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
354 355
    auto src_mlu_place = src_place;
    auto dst_cpu_place = dst_place;
356 357 358 359 360 361
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_cpu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
362 363
    auto src_cpu_place = src_place;
    auto dst_mlu_place = dst_place;
364 365 366 367 368 369
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
370 371
    auto src_mlu_place = src_place;
    auto dst_mlu_place = dst_place;
372 373 374 375 376 377 378 379 380
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
  }
#endif
A
Allen Guo 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
  }
#endif
Y
Yi Wang 已提交
404 405
}

406 407 408
template <typename TENSOR>
void TensorCopyImpl(const TENSOR& src, const platform::Place& dst_place,
                    TENSOR* dst) {
Y
Yi Wang 已提交
409 410
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  const platform::DeviceContext* dev_ctx;
411
  if (platform::is_gpu_place(dst_place) || platform::is_npu_place(dst_place) ||
412 413
      platform::is_mlu_place(dst_place) ||
      platform::is_custom_place(dst_place)) {
Y
Yi Wang 已提交
414
    dev_ctx = pool.Get(dst_place);
C
chengduo 已提交
415 416
  } else {
    dev_ctx = pool.Get(src.place());
Y
Yi Wang 已提交
417
  }
418 419 420 421 422 423 424 425 426 427 428
  TensorCopyImpl(src, dst_place, *dev_ctx, dst);
}

void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst) {
  TensorCopyImpl<Tensor>(src, dst_place, dst);
}
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                const platform::DeviceContext& ctx, Tensor* dst) {
  TensorCopyImpl<Tensor>(src, dst_place, ctx, dst);
}
Y
Yi Wang 已提交
429

F
fengjiayi 已提交
430 431
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst) {
432 433 434 435 436 437
  if (&src == dst) {
    auto src_copy = src;
    TensorCopySync(src_copy, dst_place, dst);
    return;
  }

M
minqiyang 已提交
438 439
  VLOG(3) << "TensorCopySync " << src.dims() << " from " << src.place()
          << " to " << dst_place;
F
fengjiayi 已提交
440 441 442
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
J
Jacek Czaja 已提交
443 444 445
#ifdef PADDLE_WITH_MKLDNN
  dst->set_format(src.format());
#endif
F
fengjiayi 已提交
446
  auto src_place = src.place();
447
  auto src_ptr = src.data();
448
  auto dst_ptr = dst->mutable_data(dst_place, src.dtype());
449
  VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
450 451 452 453 454 455 456

  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data from " << src_place << " to "
            << dst_place;
    return;
  }

457
  auto size = src.numel() * framework::DataTypeSize(src.dtype());
F
fengjiayi 已提交
458
  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
459
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
F
fengjiayi 已提交
460
  }
461 462 463 464
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {     /* custom_device -> cpu*/
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
A
Allen Guo 已提交
465
  }                                                // NOLINT
466 467 468
  else if (platform::is_cpu_place(src_place) &&    // NOLINT
           platform::is_custom_place(dst_place)) { /* cpu -> custom_device*/
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
A
Allen Guo 已提交
469
  }                                                 // NOLINT
470 471 472 473 474 475 476 477 478 479 480
  else if (platform::is_custom_place(src_place) &&  // NOLINT
           platform::is_custom_place(
               dst_place)) { /* custom_device -> custom_device*/
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
  }
#endif
481 482 483
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
484
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
A
Allen Guo 已提交
485
  }                                              // NOLINT
J
jianghaicheng 已提交
486 487
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
488
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
A
Allen Guo 已提交
489
  }                                              // NOLINT
J
jianghaicheng 已提交
490 491
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
492 493 494 495 496
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
497 498 499
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
    platform::XPUPlace xpu_dst_place = dst_place;
    platform::XPUPlace xpu_src_place = src_place;
500 501 502 503
    if (xpu_dst_place.device == xpu_src_place.device) {
      auto xpu_ctx = platform::DeviceContextPool::Instance().Get(xpu_dst_place);
      xpu_ctx->Wait();
    }
A
Allen Guo 已提交
504
  }       // NOLINT
J
jianghaicheng 已提交
505
  else {  // NOLINT
506 507 508 509
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
510 511 512
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {  /* npu -> cpu*/
513
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
514 515 516
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* cpu -> npu*/
517
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
518 519 520 521 522 523 524 525
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* npu -> npu*/
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
526
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
527 528 529 530 531 532
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
533
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
534 535
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
536
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
537
  }
538
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
F
fengjiayi 已提交
539
           platform::is_cpu_place(dst_place)) {
540
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
541 542 543
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
544
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
545 546 547
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
548
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
549 550 551
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
552 553
    auto src_gpu_place = src_place;
    auto dst_cpu_place = dst_place;
F
fengjiayi 已提交
554
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
555 556 557
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
558 559
    auto src_cpu_place = src_place;
    auto dst_gpu_place = dst_place;
F
fengjiayi 已提交
560
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, nullptr);
561 562 563
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
564 565
    auto src_gpu_place = src_place;
    auto dst_gpu_place = dst_place;
F
fengjiayi 已提交
566
    memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
567 568 569
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
570 571
    auto src_pinned_place = src_place;
    auto dst_gpu_place = dst_place;
W
Wu Yi 已提交
572 573
    memory::Copy(dst_gpu_place, dst_ptr, src_pinned_place, src_ptr, size,
                 nullptr);
574 575
  }
  else {  // NOLINT
576 577
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
F
fengjiayi 已提交
578 579
  }
#endif
580 581 582
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
583
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
584 585 586
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
587
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
588 589 590 591 592 593 594 595
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
596
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
597 598 599 600 601 602
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
A
Allen Guo 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
F
fengjiayi 已提交
626 627
}

Y
Yang Yu 已提交
628 629 630 631 632 633 634 635 636 637 638 639
template <typename Predicate, typename DevCtx>
struct AnyDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

  AnyDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx,
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
D
dzhwinter 已提交
640
  void apply() const {
Y
Yang Yu 已提交
641 642
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenScalar<bool>::From(*out_);
Y
Yang Yu 已提交
643
    // return any of predicate_(t) is true.
Y
Yang Yu 已提交
644 645 646 647 648 649 650
    o.device(*ctx_.eigen_device()) = predicate_(t).any();
  }
};

template <typename Predicate, typename DevCtx>
inline void AnyImpl(Predicate predicate, const framework::Tensor& tensor,
                    const DevCtx& ctx, framework::Tensor* out) {
651 652 653
  VisitDataType(
      framework::TransToProtoVarType(tensor.dtype()),
      AnyDTypeVisitor<Predicate, DevCtx>(predicate, tensor, ctx, out));
Y
Yang Yu 已提交
654 655 656
}

template <typename Predicate>
657 658
class AnyVisitor : public boost::static_visitor<bool> {
 private:
Y
Yang Yu 已提交
659 660 661
  const framework::Tensor& tensor_;
  Predicate predicate_;

662 663 664 665 666 667 668 669 670 671 672 673 674
  bool GetResultHelper(const framework::Tensor& out,
                       const platform::Place& place) const {
    platform::CPUPlace cpu;
    framework::Tensor tmp;
    tmp.Resize({1});
    tmp.mutable_data<bool>(cpu);
    auto ctx = platform::DeviceContextPool::Instance().Get(place);
    ctx->Wait();
    TensorCopy(out, cpu, *ctx, &tmp);
    ctx->Wait();
    return GetResult(tmp, cpu);
  }

675
 public:
Y
Yang Yu 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688
  AnyVisitor(const framework::Tensor& tensor, Predicate predicate)
      : tensor_(tensor), predicate_(std::move(predicate)) {}

  template <typename Place>
  bool operator()(const Place& place) const {
    framework::Tensor out;
    out.Resize({1});
    out.mutable_data<bool>(place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    AnyImpl(predicate_, tensor_, *ctx, &out);
    return this->GetResult(out, place);
  }

689 690 691 692 693
  bool GetResult(const framework::Tensor& out,
                 const platform::XPUPlace& xpu) const {
    return GetResultHelper(out, xpu);
  }

F
fwenguang 已提交
694 695 696 697 698 699 700
  bool GetResult(const framework::Tensor& out,
                 const platform::MLUPlace& mlu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", mlu));
    return true;
  }

Y
Yang Yu 已提交
701 702
  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPlace& gpu) const {
703
    return GetResultHelper(out, gpu);
Y
Yang Yu 已提交
704 705
  }

706 707 708 709 710 711
  bool GetResult(const framework::Tensor& out,
                 const platform::NPUPlace& npu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", npu));
    // return GetResultHelper(out, npu);
  }
J
jianghaicheng 已提交
712 713 714 715 716
  bool GetResult(const framework::Tensor& out,
                 const platform::IPUPlace& ipu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", ipu));
  }
717

718 719 720 721 722
  bool GetResult(const framework::Tensor& out,
                 const platform::NPUPinnedPlace& cpu) const {
    return *out.data<bool>();
  }

Y
Yang Yu 已提交
723 724 725 726
  bool GetResult(const framework::Tensor& out,
                 const platform::CPUPlace& cpu) const {
    return *out.data<bool>();
  }
C
chengduoZH 已提交
727 728 729 730 731

  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPinnedPlace& cpu) const {
    return *out.data<bool>();
  }
732 733 734 735 736 737 738

  bool GetResult(const framework::Tensor& out,
                 const platform::CustomPlace& custom_dev) const {
    PADDLE_THROW(platform::errors::Unimplemented("Not supported on place (%s) ",
                                                 custom_dev));
    return false;
  }
Y
Yang Yu 已提交
739 740
};

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
template <typename Predicate>
class AnyOutVisitor : public boost::static_visitor<> {
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
  AnyOutVisitor(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(std::move(predicate)) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize({1});
    out_->mutable_data<bool>(place);
    AnyImpl(predicate_, tensor_, *ctx, out_);
  }
};

Y
Yang Yu 已提交
762 763 764 765 766 767 768
template <typename Predicate>
inline bool Any(const framework::Tensor& tensor, Predicate predicate) {
  AnyVisitor<Predicate> visitor(tensor, predicate);
  auto place = tensor.place();
  return platform::VisitPlace(place, visitor);
}

769 770 771 772 773 774 775 776
template <typename Predicate>
inline void Any(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out) {
  AnyOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
template <typename Predicate, typename DevCtx>
struct AllDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

  AllDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx,
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
  void apply() const {
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenVector<bool>::Flatten(*out_);
    o.device(*ctx_.eigen_device()) = predicate_(t);
  }
};

template <typename Predicate, typename DevCtx>
inline void AllImpl(Predicate predicate, const framework::Tensor& tensor,
                    const DevCtx& ctx, framework::Tensor* out) {
799 800 801
  VisitDataType(
      framework::TransToProtoVarType(tensor.dtype()),
      AllDTypeVisitor<Predicate, DevCtx>(predicate, tensor, ctx, out));
J
Jack Zhou 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
}

template <typename Predicate>
class AllOutVisitor : public boost::static_visitor<> {
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
  AllOutVisitor(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(predicate) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize(tensor_.dims());
    out_->mutable_data<bool>(place);
    AllImpl(predicate_, tensor_, *ctx, out_);
  }
};

template <typename Predicate>
inline void All(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out) {
  AllOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
833
struct ContainsNANPredicate {
Y
Yang Yu 已提交
834 835 836
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isnan()) {
Y
Yang Yu 已提交
837
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
838 839 840 841
    return eigen_vec.isnan();
  }
};

Y
Yi Wang 已提交
842 843
bool TensorContainsNAN(const framework::Tensor& tensor) {
  ContainsNANPredicate predicate;
Y
Yang Yu 已提交
844 845 846
  return Any(tensor, predicate);
}

847 848 849 850 851 852
void TensorContainsNAN(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsNANPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
853 854 855 856 857 858
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsNANPredicate predicate;
  All(tensor, predicate, out);
}

Y
Yi Wang 已提交
859
struct ContainsInfPredicate {
Y
Yang Yu 已提交
860 861 862
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isinf()) {
Y
Yang Yu 已提交
863
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
864 865 866 867
    return eigen_vec.isinf();
  }
};

Y
Yi Wang 已提交
868 869
bool TensorContainsInf(const framework::Tensor& tensor) {
  ContainsInfPredicate predicate;
Y
Yang Yu 已提交
870 871 872
  return Any(tensor, predicate);
}

873 874 875 876 877 878
void TensorContainsInf(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsInfPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
879 880 881 882 883 884
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsInfPredicate predicate;
  All(tensor, predicate, out);
}

885 886 887 888 889 890 891 892 893 894
// NOTE(dzhwinter):
// Isfinite need a AllVisitor to loop through all the elements.
// We choose two cuda call instead of one allvisitor. The AllVisitor
// should be implemented if the performance hurts.
bool TensorIsfinite(const framework::Tensor& tensor) {
  ContainsInfPredicate pred_inf;
  ContainsNANPredicate pred_nan;
  return !Any(tensor, pred_inf) && !Any(tensor, pred_nan);
}

895
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
896
template <typename T>
J
Jack Zhou 已提交
897 898
static inline void __global__ BothFalse(const T* cmp, T* out, int element_num) {
  CUDA_KERNEL_LOOP(i, element_num) { out[i] = (!cmp[i]) && (!out[i]); }
899 900 901 902 903 904 905 906 907 908 909 910 911 912
}
#endif

struct BothFalseVisitor : public boost::static_visitor<> {
  const framework::Tensor& in_;
  mutable framework::Tensor* out_;
  BothFalseVisitor(const framework::Tensor& in, framework::Tensor* out)
      : in_(in), out_(out) {}

  template <typename Place>
  void operator()(const Place& place) const {
    VisitorImpl(place);
  }

913 914 915
  void VisitorImpl(const platform::XPUPlace& xpu) const {
    PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
  }
J
jianghaicheng 已提交
916 917 918
  void VisitorImpl(const platform::IPUPlace& ipu) const {
    PADDLE_THROW(platform::errors::Unimplemented("IPUPlace is not supported"));
  }
919

920
  void VisitorImpl(const platform::CUDAPlace& gpu) const {
921
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
922
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(gpu);
J
Jack Zhou 已提交
923 924 925 926 927 928 929 930 931 932
    constexpr int MAX_BLOCK_DIM = 512;
    const int MAX_GRID_DIM = ctx->GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
    int element_num = in_.numel();
    int block_size = (element_num >= MAX_BLOCK_DIM)
                         ? MAX_BLOCK_DIM
                         : (1 << static_cast<int>(std::log2(element_num)));
    int grid_size = element_num / block_size;
    grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
    BothFalse<bool><<<grid_size, block_size, 0, ctx->stream()>>>(
        in_.data<bool>(), out_->mutable_data<bool>(gpu), element_num);
933 934 935
#endif
  }

936 937 938 939
  void VisitorImpl(const platform::NPUPlace& npu) const {
    // TODO(zhiqiu)
  }

F
fwenguang 已提交
940 941 942 943
  void VisitorImpl(const platform::MLUPlace& mlu) const {
    PADDLE_THROW(platform::errors::Unimplemented("MLUPlace is not supported"));
  }

944
  void VisitorImpl(const platform::CPUPlace& cpu) const {
J
Jack Zhou 已提交
945 946 947 948 949 950 951 952
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
953 954 955 956
  }

  void VisitorImpl(
      const platform::CUDAPinnedPlace& cpu /* equals to cpu*/) const {
J
Jack Zhou 已提交
957 958 959 960 961 962 963 964
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
965
  }
966 967 968 969 970 971 972 973 974 975 976 977

  void VisitorImpl(
      const platform::NPUPinnedPlace& cpu /* equals to cpu*/) const {
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
  }
978 979 980 981 982

  void VisitorImpl(const platform::CustomPlace& custom_dev) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("CustomPlace is not supported"));
  }
983 984 985 986 987 988 989 990 991 992 993
};

void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInf(tensor, &tmp);
  TensorContainsNAN(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
994 995 996 997 998 999 1000 1001 1002
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInfV2(tensor, &tmp);
  TensorContainsNANV2(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx) {
  {  // the 1st field, uint32_t version
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char*>(&version), sizeof(version));
  }
  {  // the 2nd field, tensor description
     // int32_t  size
     // void*    protobuf message
    proto::VarType::TensorDesc desc;
1013
    desc.set_data_type(framework::TransToProtoVarType(tensor.dtype()));
1014
    auto dims = phi::vectorize(tensor.dims());
Y
Yi Wang 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023
    auto* pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
    std::copy(dims.begin(), dims.end(), pb_dims->begin());
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char*>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
1024
    uint64_t size = tensor.numel() * framework::DataTypeSize(tensor.dtype());
Y
yuyang18 已提交
1025

1026
    auto* data_ptr = tensor.data();
W
wanghuancoder 已提交
1027
    PADDLE_ENFORCE_LT(size, (std::numeric_limits<std::streamsize>::max)(),
T
tangwei12 已提交
1028 1029
                      platform::errors::ResourceExhausted(
                          "tensor size %d overflow when writing tensor", size));
Y
Yi Wang 已提交
1030
    if (platform::is_gpu_place(tensor.place())) {
1031
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yi Wang 已提交
1032 1033 1034 1035 1036 1037 1038 1039
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& gpu_dev_ctx =
          static_cast<const platform::CUDADeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1040
        memory::Copy(cpu, buf.get(), tensor.place(),
Y
Yi Wang 已提交
1041 1042 1043 1044 1045 1046 1047 1048
                     reinterpret_cast<const void*>(data), size_to_write,
                     gpu_dev_ctx.stream());
        gpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
T
tangwei12 已提交
1049 1050
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDAPlace is not supported when not compiled with CUDA"));
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
#endif
    } else if (platform::is_xpu_place(tensor.place())) {
#ifdef PADDLE_WITH_XPU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& xpu_dev_ctx =
          static_cast<const platform::XPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1062
        memory::Copy(cpu, buf.get(), tensor.place(),
1063 1064 1065 1066 1067 1068 1069 1070 1071
                     reinterpret_cast<const void*>(data), size_to_write);
        xpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "XPUPlace is not supported when not compiled with XPU"));
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
#endif
    } else if (platform::is_mlu_place(tensor.place())) {
#ifdef PADDLE_WITH_MLU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& mlu_dev_ctx =
          static_cast<const platform::MLUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1083
        memory::Copy(cpu, buf.get(), tensor.place(),
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
                     reinterpret_cast<const void*>(data), size_to_write,
                     mlu_dev_ctx.stream());
        mlu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "MLUPlace is not supported when not compiled with MLU"));
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
#endif
    } else if (platform::is_npu_place(tensor.place())) {
#ifdef PADDLE_WITH_ASCEND_CL
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& npu_dev_ctx =
          static_cast<const platform::NPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1105
        memory::Copy(cpu, buf.get(), tensor.place(),
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
                     reinterpret_cast<const void*>(data), size_to_write,
                     npu_dev_ctx.stream());
        npu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported when not compiled with NPU"));
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
#endif
    } else if (platform::is_custom_place(tensor.place())) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& custom_device_context =
          static_cast<const platform::CustomDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
        memory::Copy(cpu, buf.get(), tensor.place(),
                     reinterpret_cast<const void*>(data), size_to_write,
                     custom_device_context.stream());
        custom_device_context.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "CustomPlace is not supported when not compiled with "
          "CustomDevice"));
Y
Yi Wang 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
#endif
    } else {
      os.write(static_cast<const char*>(data_ptr),
               static_cast<std::streamsize>(size));
    }
  }
}

struct DeserializedDataFunctor {
  DeserializedDataFunctor(void** buf, Tensor* tensor,
                          const platform::Place& place)
      : buf_(buf), tensor_(tensor), place_(place) {}

  template <typename T>
D
dzhwinter 已提交
1153
  void apply() {
Y
Yi Wang 已提交
1154 1155 1156 1157 1158 1159 1160 1161
    *buf_ = tensor_->mutable_data<T>(place_);
  }

  void** buf_;
  Tensor* tensor_;
  platform::Place place_;
};

T
tangwei12 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));

  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));

  proto::VarType::TensorDesc desc;
  {  // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
  }
  {  // read tensor
1186
    tensor->Resize(phi::make_ddim(shape));
T
tangwei12 已提交
1187 1188 1189 1190
    size_t seekg = seek * framework::SizeOfType(desc.data_type());
    is.seekg(seekg, is.cur);

    void* buf;
W
Wilber 已提交
1191
    platform::CPUDeviceContext ctx;
T
tangwei12 已提交
1192
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
1193
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
1194
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
1195
        platform::is_mlu_place(dev_ctx.GetPlace()) ||
1196 1197
        platform::is_npu_place(dev_ctx.GetPlace()) ||
        platform::is_custom_place(dev_ctx.GetPlace())) {
1198
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
1199
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_MLU) ||  \
1200
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_CUSTOM_DEVICE)
T
tangwei12 已提交
1201
      Tensor cpu_tensor;
1202
      cpu_tensor.Resize(phi::make_ddim(shape));
T
tangwei12 已提交
1203 1204 1205 1206 1207 1208
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
1209 1210
      if (platform::is_npu_place(dev_ctx.GetPlace()) ||
          platform::is_custom_place(dev_ctx.GetPlace())) {
1211 1212
        dev_ctx.Wait();
      }
T
tangwei12 已提交
1213
#else
1214 1215 1216
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
1217
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
1218 1219
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
1220 1221 1222
      } else if (platform::is_mlu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "MLUPlace is not supported when not compiled with MLU"));
1223 1224 1225
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
1226
      }
T
tangwei12 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
    }
  }
}

Y
Yi Wang 已提交
1237 1238 1239 1240
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));
T
tangwei12 已提交
1241 1242 1243 1244 1245
  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));
Y
Yi Wang 已提交
1246 1247 1248
  proto::VarType::TensorDesc desc;
  {  // int32_t size
     // proto buffer
Z
zlsh80826 已提交
1249
    int32_t size = -1;
Y
Yi Wang 已提交
1250
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
Z
zlsh80826 已提交
1251 1252 1253 1254
    PADDLE_ENFORCE_EQ(is.good(), true, platform::errors::Unavailable(
                                           "Cannot read tensor desc size"));
    PADDLE_ENFORCE_GE(size, 0, platform::errors::InvalidArgument(
                                   "Tensor desc size should >= 0"));
Y
Yi Wang 已提交
1255 1256
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
T
tangwei12 已提交
1257 1258 1259
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
Y
Yi Wang 已提交
1260 1261 1262 1263 1264
  }
  {  // read tensor
    std::vector<int64_t> dims;
    dims.reserve(static_cast<size_t>(desc.dims().size()));
    std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
1265
    tensor->Resize(phi::make_ddim(dims));
Y
Yi Wang 已提交
1266
    void* buf;
W
Wilber 已提交
1267
    platform::CPUDeviceContext ctx;
Y
Yu Yang 已提交
1268
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
1269
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
1270
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
1271
        platform::is_mlu_place(dev_ctx.GetPlace()) ||
1272 1273
        platform::is_npu_place(dev_ctx.GetPlace()) ||
        platform::is_custom_place(dev_ctx.GetPlace())) {
1274
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
1275
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_MLU) ||  \
1276
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_CUSTOM_DEVICE)
Y
Yi Wang 已提交
1277
      Tensor cpu_tensor;
1278
      cpu_tensor.Resize(phi::make_ddim(dims));
Y
Yi Wang 已提交
1279 1280 1281
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
Y
yuyang18 已提交
1282
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
1283 1284
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
1285 1286
      if (platform::is_npu_place(dev_ctx.GetPlace()) ||
          platform::is_custom_place(dev_ctx.GetPlace())) {
1287 1288
        dev_ctx.Wait();
      }
Y
Yi Wang 已提交
1289
#else
1290 1291 1292
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
1293
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
1294 1295
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
1296 1297 1298
      } else if (platform::is_mlu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "MLUPlace is not supported when not compiled with MLU"));
1299
      } else if (platform::is_npu_place(dev_ctx.GetPlace())) {
1300 1301
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
1302 1303 1304
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CutomPlace is not supported when not compiled with CustomDevice"));
1305
      }
Y
Yi Wang 已提交
1306 1307 1308 1309 1310
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
Y
yuyang18 已提交
1311
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
1312 1313 1314 1315
    }
  }
}

6
633WHU 已提交
1316 1317 1318 1319
// get tensor data point by DLDataType
void* GetDstPtrByDLDataType(DLDataType type, framework::Tensor* dst,
                            const platform::Place& dst_place) {
  // vector types not currently supported
1320 1321 1322
  PADDLE_ENFORCE_LE(type.lanes, 1,
                    platform::errors::Unimplemented(
                        "Vector type is not supported currently."));
6
633WHU 已提交
1323 1324 1325 1326 1327 1328 1329

  switch (type.bits) {
    case 8:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int8_t>(dst_place));
      if (type.code == kDLUInt)
        return static_cast<void*>(dst->mutable_data<uint8_t>(dst_place));
1330 1331 1332
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1333 1334 1335 1336 1337 1338
    case 16:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int16_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::float16>(dst_place));
S
Siming Dai 已提交
1339 1340 1341
      if (type.code == kDLBfloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::bfloat16>(dst_place));
1342 1343 1344
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1345 1346 1347 1348 1349
    case 32:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int32_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<float>(dst_place));
1350 1351 1352
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1353 1354 1355 1356 1357
    case 64:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int64_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<double>(dst_place));
S
Siming Dai 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<float>>(dst_place));
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
    case 128:
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<double>>(dst_place));
1368 1369 1370
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1371
    default:
1372 1373
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported DLDataType.bits %d.", type.bits));
6
633WHU 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
  }
}

void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst) {
  platform::CPUPlace dst_place = platform::CPUPlace();
  platform::CPUPlace src_place = platform::CPUPlace();

  std::vector<int64_t> vec;
  std::copy(dl_tensor.shape, dl_tensor.shape + dl_tensor.ndim,
            std::back_inserter(vec));

1385
  framework::DDim vddim = phi::make_ddim(vec);
6
633WHU 已提交
1386 1387 1388 1389 1390 1391

  dst->Resize(vddim);
  ::DLDataType type = dl_tensor.dtype;
  void* dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);

  auto src_ptr = static_cast<const void*>(dl_tensor.data);
1392
  auto size = phi::product(vddim) * type.bits / 8;
6
633WHU 已提交
1393

S
Siming Dai 已提交
1394
  if (dl_tensor.device.device_type == kDLCPU) {
6
633WHU 已提交
1395 1396
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
1397
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
1398
  if (dl_tensor.device.device_type == kDLGPU) {
6
633WHU 已提交
1399
    platform::CUDAPlace dst_place =
S
Siming Dai 已提交
1400
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1401
    platform::CUDAPlace src_place =
S
Siming Dai 已提交
1402
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1403 1404 1405 1406 1407 1408 1409
    dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(dst_place);
    memory::Copy(
        dst_place, dst_ptr, src_place, src_ptr, size,
        reinterpret_cast<const platform::CUDADeviceContext&>(*ctx).stream());
  }
#endif
1410 1411 1412
#ifdef PADDLE_WITH_XPU
  PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
#endif
6
633WHU 已提交
1413 1414
}

1415 1416 1417 1418 1419 1420
template <typename T>
std::string format_tensor(const framework::Tensor& tensor) {
  // TODO(zhiqiu): use the print option to format tensor.
  return "NOT IMPLEMENTED";
}

1421 1422 1423 1424 1425
template <typename T>
std::ostream& print_tensor(std::ostream& os, const framework::Tensor& tensor) {
  auto inspect = tensor.data<T>();
  auto element_num = tensor.numel();

1426
  os << "  - data: [";
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
  // Note: int8_t && uint8_t is typedf of char, ostream unable to print properly
  if (typeid(int8_t) == typeid(T) || typeid(uint8_t) == typeid(T)) {
    if (element_num > 0) {
      os << signed(inspect[0]);
      for (int j = 1; j < element_num; ++j) {
        os << " " << signed(inspect[j]);
      }
    }
  } else {
    if (element_num > 0) {
      os << inspect[0];
      for (int j = 1; j < element_num; ++j) {
        os << " " << inspect[j];
      }
1441 1442 1443 1444 1445 1446
    }
  }
  os << "]";
  return os;
}

1447
template <>
1448
std::ostream& print_tensor<paddle::platform::complex<float>>(
1449
    std::ostream& os, const framework::Tensor& tensor) {
1450
  auto inspect = tensor.data<paddle::platform::complex<float>>();
1451 1452 1453 1454
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1455
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1456
    for (int j = 1; j < element_num; ++j) {
1457 1458
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1459 1460 1461 1462 1463 1464 1465
    }
  }
  os << "]";
  return os;
}

template <>
1466
std::ostream& print_tensor<paddle::platform::complex<double>>(
1467
    std::ostream& os, const framework::Tensor& tensor) {
1468
  auto inspect = tensor.data<paddle::platform::complex<double>>();
1469 1470 1471 1472
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1473
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1474
    for (int j = 1; j < element_num; ++j) {
1475 1476
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1477 1478 1479 1480 1481 1482
    }
  }
  os << "]";
  return os;
}

1483
std::ostream& operator<<(std::ostream& os, const LoD& lod) {
1484 1485
  // NOTE(xiongkun):
  // https://stackoverflow.com/questions/5195512/namespaces-and-operator-resolution
1486
  // if we don't redefine, the operator << of phi / framework LoD is not found.
1487
  paddle::string::operator<<(os, lod);
1488 1489 1490
  return os;
}

1491 1492 1493
}  // namespace framework
}  // namespace paddle

1494
namespace phi {
1495

1496 1497 1498 1499 1500
std::ostream& operator<<(std::ostream& os, const LoD& lod) {
  paddle::string::operator<<(os, lod);
  return os;
}

1501
std::ostream& operator<<(std::ostream& os, const phi::DenseTensor& t) {
1502 1503 1504 1505
  if (t.lod().size() > 0) {
    os << "  - lod: " << t.lod() << "\n";
  }

1506 1507
  os << "  - place: " << t.place() << "\n";
  os << "  - shape: [" << t.dims() << "]\n";
1508 1509
  os << "  - layout: " << paddle::framework::DataLayoutToString(t.layout())
     << "\n";
1510

1511 1512 1513 1514 1515
#ifdef PADDLE_WITH_MKLDNN
  os << "  - format: "
     << dnnl_fmt_tag2str(static_cast<dnnl_format_tag_t>(t.format())) << "\n";
#endif

1516
  DenseTensor tensor;
1517
  tensor.Resize(t.dims());
1518
  if (paddle::platform::is_cpu_place(t.place())) {
1519 1520
    tensor.ShareDataWith(t);
  } else {
1521 1522 1523 1524
    paddle::platform::CPUPlace place;
    paddle::framework::TensorCopy(t, place, &tensor);
    paddle::platform::DeviceContextPool& pool =
        paddle::platform::DeviceContextPool::Instance();
1525 1526 1527 1528
    auto& dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();
  }

1529 1530 1531 1532 1533 1534 1535 1536
#define PrintTensorCallback(cpp_type, proto_type)                 \
  do {                                                            \
    if (paddle::framework::TransToProtoVarType(tensor.dtype()) == \
        proto_type) {                                             \
      os << "  - dtype: " << proto_type << "\n";                  \
      paddle::framework::print_tensor<cpp_type>(os, tensor);      \
      return os;                                                  \
    }                                                             \
1537 1538 1539 1540 1541 1542
  } while (0)

  _ForEachDataType_(PrintTensorCallback);
  VLOG(1) << "PrintVar: unrecognized data type:" << t.type();
  return os;
}
1543
}  // namespace phi