dist_se_resnext.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18 19 20 21 22 23 24 25 26 27 28 29 30
import numpy as np
import argparse
import time
import math

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import sys
import signal
T
typhoonzero 已提交
31
from test_dist_base import TestDistRunnerBase, runtime_main
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1

train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}


class SE_ResNeXt():
    def __init__(self, layers=50):
        self.params = train_parameters
        self.layers = layers

    def net(self, input, class_dim=1000):
        layers = self.layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)
        if layers == 50:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 6, 3]
            num_filters = [128, 256, 512, 1024]

            conv = self.conv_bn_layer(
                input=input,
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
            conv = fluid.layers.pool2d(
                input=conv,
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')
        elif layers == 101:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 23, 3]
            num_filters = [128, 256, 512, 1024]

            conv = self.conv_bn_layer(
                input=input,
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
            conv = fluid.layers.pool2d(
                input=conv,
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')
        elif layers == 152:
            cardinality = 64
            reduction_ratio = 16
            depth = [3, 8, 36, 3]
            num_filters = [128, 256, 512, 1024]

            conv = self.conv_bn_layer(
                input=input,
                num_filters=64,
                filter_size=3,
                stride=2,
                act='relu')
            conv = self.conv_bn_layer(
                input=conv, num_filters=64, filter_size=3, stride=1, act='relu')
            conv = self.conv_bn_layer(
                input=conv,
                num_filters=128,
                filter_size=3,
                stride=1,
                act='relu')
            conv = fluid.layers.pool2d(
                input=conv, pool_size=3, pool_stride=2, pool_padding=1, \
                pool_type='max')

        for block in range(len(depth)):
            for i in range(depth[block]):
                conv = self.bottleneck_block(
                    input=conv,
                    num_filters=num_filters[block],
                    stride=2 if i == 0 and block != 0 else 1,
                    cardinality=cardinality,
                    reduction_ratio=reduction_ratio)

        pool = fluid.layers.pool2d(
            input=conv, pool_size=7, pool_type='avg', global_pooling=True)
        drop = fluid.layers.dropout(x=pool, dropout_prob=0.2)
        stdv = 1.0 / math.sqrt(drop.shape[1] * 1.0)
W
Wu Yi 已提交
132 133 134 135 136
        out = fluid.layers.fc(
            input=drop,
            size=class_dim,
            act='softmax',
            param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
137
                initializer=fluid.initializer.Constant(value=0.05)))
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        return out

    def shortcut(self, input, ch_out, stride):
        ch_in = input.shape[1]
        if ch_in != ch_out or stride != 1:
            filter_size = 1
            return self.conv_bn_layer(input, ch_out, filter_size, stride)
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, cardinality,
                         reduction_ratio):
        conv0 = self.conv_bn_layer(
            input=input, num_filters=num_filters, filter_size=1, act='relu')
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            groups=cardinality,
            act='relu')
        conv2 = self.conv_bn_layer(
            input=conv1, num_filters=num_filters * 2, filter_size=1, act=None)
        scale = self.squeeze_excitation(
            input=conv2,
            num_channels=num_filters * 2,
            reduction_ratio=reduction_ratio)

        short = self.shortcut(input, num_filters * 2, stride)

        return fluid.layers.elementwise_add(x=short, y=scale, act='relu')

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
M
minqiyang 已提交
182
            padding=(filter_size - 1) // 2,
183 184
            groups=groups,
            act=None,
W
Wu Yi 已提交
185 186
            # avoid pserver CPU init differs from GPU
            param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
187
                initializer=fluid.initializer.Constant(value=0.05)),
188 189 190 191 192 193 194
            bias_attr=False)
        return fluid.layers.batch_norm(input=conv, act=act)

    def squeeze_excitation(self, input, num_channels, reduction_ratio):
        pool = fluid.layers.pool2d(
            input=input, pool_size=0, pool_type='avg', global_pooling=True)
        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
W
Wu Yi 已提交
195 196 197 198 199 200
        squeeze = fluid.layers.fc(
            input=pool,
            size=num_channels // reduction_ratio,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.05)),
            act='relu')
201
        stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
W
Wu Yi 已提交
202 203 204 205 206 207
        excitation = fluid.layers.fc(
            input=squeeze,
            size=num_channels,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.05)),
            act='sigmoid')
208 209 210 211
        scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
        return scale


T
typhoonzero 已提交
212 213 214 215 216 217
class DistSeResneXt2x2(TestDistRunnerBase):
    def get_model(self, batch_size=2):
        # Input data
        image = fluid.layers.data(
            name="data", shape=[3, 224, 224], dtype='float32')
        label = fluid.layers.data(name="int64", shape=[1], dtype='int64')
218

T
typhoonzero 已提交
219 220 221 222
        # Train program
        model = SE_ResNeXt(layers=50)
        out = model.net(input=image, class_dim=102)
        cost = fluid.layers.cross_entropy(input=out, label=label)
223

T
typhoonzero 已提交
224 225 226
        avg_cost = fluid.layers.mean(x=cost)
        acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
227

T
typhoonzero 已提交
228 229
        # Evaluator
        test_program = fluid.default_main_program().clone(for_test=True)
230

T
typhoonzero 已提交
231 232 233 234
        # Optimization
        total_images = 6149  # flowers
        epochs = [30, 60, 90]
        step = int(total_images / batch_size + 1)
235

T
typhoonzero 已提交
236 237 238 239
        bd = [step * e for e in epochs]
        base_lr = 0.1
        lr = []
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
240

T
typhoonzero 已提交
241
        optimizer = fluid.optimizer.Momentum(
W
Wu Yi 已提交
242 243
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd, values=lr),
T
typhoonzero 已提交
244 245 246
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))
        optimizer.minimize(avg_cost)
247

T
typhoonzero 已提交
248 249 250 251 252
        # Reader
        train_reader = paddle.batch(
            paddle.dataset.flowers.train(), batch_size=batch_size)
        test_reader = paddle.batch(
            paddle.dataset.flowers.test(use_xmap=False), batch_size=batch_size)
253

T
typhoonzero 已提交
254
        return test_program, avg_cost, train_reader, test_reader, acc_top1, out
255 256 257


if __name__ == "__main__":
T
typhoonzero 已提交
258
    runtime_main(DistSeResneXt2x2)