transpose_kernel.cc 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/transpose_kernel.h"
#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

void SetInMemDescWithSqueeze2FuseSupport(
    const std::vector<int> fused_squeeze2_axes,
    DenseTensor* in,
    const dnnl::memory::desc& in_md) {
  const std::set<int64_t> squeeze2_axes_set(fused_squeeze2_axes.begin(),
                                            fused_squeeze2_axes.end());
  const std::vector<int64_t>& x_vec_dims = in_md.dims();
  std::vector<int64_t> squeezed_op_tz(
      x_vec_dims.size() - fused_squeeze2_axes.size(), 0);

  int j = 0;
  for (size_t i = 0; i < x_vec_dims.size(); ++i) {
    if (squeeze2_axes_set.count(i) ||
        squeeze2_axes_set.count(i - x_vec_dims.size())) {
      PADDLE_ENFORCE_EQ(
          x_vec_dims[i],
          1,
          errors::InvalidArgument(
              "Squeeze2 input dim %d should be equal to one, but get %d.",
              i,
              x_vec_dims[i]));
      continue;
    }
    squeezed_op_tz[j++] = x_vec_dims[i];
  }

  in->set_mem_desc(in_md.reshape(squeezed_op_tz));
  in->Resize(make_ddim(squeezed_op_tz));
}

void SetInMemDescWithLogicalLayoutFusesSupport(
    const OneDNNContext& dev_ctx,
    DenseTensor* in,
    const dnnl::memory::desc& in_md) {
  const auto fused_squeeze2_axes =
      dev_ctx.HasDnnAttr("fused_squeeze2_axes")
          ? PADDLE_GET_CONST(std::vector<int>,
                             dev_ctx.GetDnnAttr("fused_squeeze2_axes"))
          : std::vector<int>();
  if (fused_squeeze2_axes.empty()) {
    in->set_mem_desc(in_md);
    in->Resize(make_ddim(in_md.dims()));
  } else {
    SetInMemDescWithSqueeze2FuseSupport(fused_squeeze2_axes, in, in_md);
  }
}

template <typename T, typename Context>
void TransposeKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     const std::vector<int>& axis,
                     DenseTensor* out) {
  PADDLE_ENFORCE_EQ(
      dev_ctx.GetPlace().GetType() == AllocationType::CPU,
      true,
      errors::PreconditionNotMet("oneDNN Transpose kernel must use CPUPlace"));

  SetInMemDescWithLogicalLayoutFusesSupport(
      dev_ctx, const_cast<DenseTensor*>(&x), x.mem_desc());

  if (axis.size() == 1) {
82
    Copy<Context>(dev_ctx, x, x.place(), false, out);
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    out->set_mem_desc(x.mem_desc());
    return;
  }

  auto x_vec_dims = vectorize(x.dims());
  auto x_type = funcs::ToOneDNNDataType(x.dtype());
  funcs::ReorderOneDNNHandler reorder_handler(
      x_vec_dims, x.dtype(), x_type, dev_ctx.GetEngine());
  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
      x.mem_desc(), funcs::to_void_cast(x.data<T>()));
  auto dst_md =
      dnnl::memory::desc(x_vec_dims,
                         x.mem_desc().data_type(),
                         funcs::GetPlainOneDNNFormat(x_vec_dims.size()));

  // a trick is used here to fake transpose of out_md, so later it will be
  // "untransposed", leaving output data in plain format tag
  std::vector<int64_t> fake_strides(axis.size());
  auto dims = dst_md.dims();
  int total_stride = 1;
  for (int i = static_cast<int>(dims.size()) - 1; i >= 0; --i) {
    fake_strides[axis[i]] = total_stride;
    total_stride *= dims[axis[i]];
  }
  dst_md =
      dnnl::memory::desc(x_vec_dims, x.mem_desc().data_type(), fake_strides);
  auto dst_data = dev_ctx.template Alloc<T>(out);
  auto reorder_dst_memory_p =
      std::make_shared<dnnl::memory>(dst_md, dev_ctx.GetEngine(), dst_data);
  auto reorder_p = reorder_handler.AcquireReorder(reorder_dst_memory_p,
                                                  reorder_src_memory_p);

  auto& astream = OneDNNContext::tls().get_stream();
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
  astream.wait();

  // it is needed because oneDNN's permute axis understand axes order in
  // different way PaddlePaddle's transpose
  std::vector<int> permute_axis(axis.size());
  for (size_t i = 0; i < axis.size(); ++i) {
    permute_axis[axis[i]] = i;
  }
  funcs::SetOutMemDescWithLogicalLayoutFusesSupport(
      dev_ctx,
      out,
      reorder_dst_memory_p->get_desc().permute_axes(permute_axis));
}
}  // namespace phi

PD_REGISTER_KERNEL(transpose,
                   OneDNN,
                   ONEDNN,
                   phi::TransposeKernel,
                   float,
                   uint8_t,
                   int8_t,
                   phi::dtype::bfloat16) {}