cross_entropy.cu 4.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include "paddle/fluid/framework/convert_utils.h"
S
sneaxiy 已提交
16
#include "paddle/fluid/operators/math.h"
Y
Yi Wang 已提交
17
#include "paddle/fluid/operators/math/cross_entropy.h"
18 19
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
20 21 22 23 24

namespace paddle {
namespace operators {
namespace math {

25 26
template <typename T, typename LabelT>
__global__ void CrossEntropyKernel(T* Y, const T* X, const LabelT* label,
27 28
                                   const int N, const int D,
                                   const int ignore_index) {
29
  CUDA_KERNEL_LOOP(i, N) {
30 31
    auto lbl = static_cast<int64_t>(label[i]);
    PADDLE_ENFORCE(lbl >= 0 && lbl < D || lbl == ignore_index,
32 33
                   "The value of label[%d] expected >= 0 and < %ld, or == %ld, "
                   "but got %ld. Please check input value.",
34 35
                   i, D, ignore_index, lbl);
    Y[i] = ignore_index == lbl
C
chengduo 已提交
36
               ? static_cast<T>(0)
37
               : -math::TolerableValue<T>()(real_log(X[i * D + lbl]));
38 39 40 41 42 43 44
  }
}

template <typename T>
__global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label,
                                       const int class_num) {
  int tid = threadIdx.x;
C
chengduo 已提交
45
  T val(0);
46

47 48 49
  int idx = blockIdx.x * class_num + tid;
  int end = blockIdx.x * class_num + class_num;
  for (; idx < end; idx += blockDim.x) {
C
chengduo 已提交
50
    val += math::TolerableValue<T>()(real_log(X[idx])) * label[idx];
51 52
  }

53 54 55
  val = paddle::platform::reduceSum(val, tid, blockDim.x);
  if (threadIdx.x == 0) {
    Y[blockIdx.x] = -val;
56 57 58
  }
}

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
template <typename T>
struct HardLabelCrossEntropyCUDAFunctorImpl {
 public:
  HardLabelCrossEntropyCUDAFunctorImpl(T* loss_data, const T* prob_data,
                                       const void* label_data,
                                       const int batch_size,
                                       const int class_num,
                                       const int ignore_index,
                                       const int block_size, gpuStream_t stream)
      : loss_data_(loss_data),
        prob_data_(prob_data),
        label_data_(label_data),
        batch_size_(batch_size),
        class_num_(class_num),
        ignore_index_(ignore_index),
        block_size_(block_size),
        stream_(stream) {}

  template <typename U>
  void apply() const {
    int grid_size = (batch_size_ + block_size_ - 1) / block_size_;
    CrossEntropyKernel<T, U><<<grid_size, block_size_, 0, stream_>>>(
        loss_data_, prob_data_, static_cast<const U*>(label_data_), batch_size_,
        class_num_, ignore_index_);
  }

 private:
  T* loss_data_;
  const T* prob_data_;
  const void* label_data_;
  const int batch_size_;
  const int class_num_;
  const int ignore_index_;
  const int block_size_;
  gpuStream_t stream_;
};

96
template <typename T>
Q
QI JUN 已提交
97
class CrossEntropyFunctor<platform::CUDADeviceContext, T> {
98
 public:
Q
QI JUN 已提交
99 100
  void operator()(const platform::CUDADeviceContext& ctx,
                  framework::Tensor* out, const framework::Tensor* prob,
101 102
                  const framework::Tensor* labels, const bool softLabel,
                  const int ignore_index, const int axis_dim) {
103 104 105 106 107
    const T* prob_data = prob->data<T>();
    T* loss_data = out->mutable_data<T>(ctx.GetPlace());

    int batch_size = prob->dims()[0];
    int class_num = prob->dims()[1];
108 109 110 111 112
#ifdef __HIPCC__
    constexpr int kMaxBlockDim = 256;
#else
    constexpr int kMaxBlockDim = 512;
#endif
113 114 115

    if (softLabel) {
      const T* label_data = labels->data<T>();
116 117
      int block = class_num > kMaxBlockDim
                      ? kMaxBlockDim
118
                      : pow(2, static_cast<int>(std::log2(class_num)));
119

120
      SoftCrossEntropyKernel<T><<<batch_size, block, 0, ctx.stream()>>>(
Q
qijun 已提交
121
          loss_data, prob_data, label_data, class_num);
122
    } else {
123 124 125
      HardLabelCrossEntropyCUDAFunctorImpl<T> functor(
          loss_data, prob_data, labels->data(), batch_size, class_num,
          ignore_index, kMaxBlockDim, ctx.stream());
126 127
      framework::VisitDataType(framework::TransToProtoVarType(labels->dtype()),
                               functor);
128 129 130 131
    }
  }
};

Q
QI JUN 已提交
132 133
template class CrossEntropyFunctor<platform::CUDADeviceContext, float>;
template class CrossEntropyFunctor<platform::CUDADeviceContext, double>;
C
chengduo 已提交
134 135
template class CrossEntropyFunctor<platform::CUDADeviceContext,
                                   platform::float16>;
136 137 138
}  // namespace math
}  // namespace operators
}  // namespace paddle