sequence_unpad_op.h 3.6 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_padding.h"

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

template <typename DeviceContext, typename T>
class SequenceUnpadOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x_t = ctx.Input<LoDTensor>("X");
    auto* len_t = ctx.Input<LoDTensor>("Length");
    auto* out_t = ctx.Output<LoDTensor>("Out");
    out_t->mutable_data<T>(ctx.GetPlace());

    const int64_t* seq_len_ptr = nullptr;
    if (platform::is_gpu_place(ctx.GetPlace())) {
      LoDTensor seq_len_cpu;
      seq_len_cpu.Resize(len_t->dims());
      seq_len_ptr = seq_len_cpu.mutable_data<int64_t>(platform::CPUPlace());
      framework::TensorCopy(*len_t, platform::CPUPlace(),
                            ctx.template device_context<DeviceContext>(),
                            &seq_len_cpu);
    } else {
      seq_len_ptr = len_t->data<int64_t>();
    }

    size_t batch_size = x_t->dims()[0];
    std::vector<size_t> out_lod0(batch_size + 1, 0);
    for (size_t i = 0; i < batch_size; ++i) {
      out_lod0[i + 1] = out_lod0[i] + seq_len_ptr[i];
    }

    framework::LoD out_lod;
    out_lod.push_back(out_lod0);
    out_t->set_lod(out_lod);

    std::vector<int64_t> out_dims_vec{static_cast<int64_t>(out_lod0.back())};
    if (x_t->dims().size() == 2) {
      out_dims_vec.push_back(1);
    } else {
T
Tao Luo 已提交
64
      for (int i = 2; i < x_t->dims().size(); ++i) {
Y
Yibing Liu 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
        out_dims_vec.push_back(x_t->dims()[i]);
      }
    }
    out_t->Resize(framework::make_ddim(out_dims_vec));

    int64_t padded_length = x_t->dims()[1];
    math::UnpaddingLoDTensorFunctor<DeviceContext, T>()(
        ctx.template device_context<DeviceContext>(), *x_t, out_t,
        padded_length, 0, false, math::kBatchLengthWidth);
  }
};

template <typename DeviceContext, typename T>
class SequenceUnpadGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* d_x = ctx.Output<LoDTensor>(framework::GradVarName("X"));
    if (d_x) {
      const auto* d_out = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
      d_x->mutable_data<T>(ctx.GetPlace());

86
      int padded_length = d_x->dims()[1];
Y
Yibing Liu 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

      LoDTensor zero_pads;
      zero_pads.Resize({1, 1});
      zero_pads.mutable_data<T>(ctx.GetPlace());
      math::SetConstant<DeviceContext, T> set_zero;
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      set_zero(dev_ctx, &zero_pads, static_cast<T>(0));

      math::PaddingLoDTensorFunctor<DeviceContext, T>()(
          ctx.template device_context<DeviceContext>(), *d_out, d_x, zero_pads,
          padded_length, 0, false, math::kBatchLengthWidth);
    }
  }
};

}  // namespace operators
}  // namespace paddle