sequence_unpad_op.cc 6.3 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_unpad_op.h"
16 17
#include <memory>
#include <string>
Y
Yibing Liu 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

namespace paddle {
namespace operators {

class SequenceUnpadOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequenceUnpadOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Length"),
                   "Input(Length) of SequenceUnpadOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SequenceUnpadOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      "The rank of Input(X) can't be less than 2.");

    auto len_dims = ctx->GetInputDim("Length");
    PADDLE_ENFORCE(len_dims.size() == 2 && len_dims[1] == 1,
                   "The shape of Input(Length) should be [batch_size, 1].");
    PADDLE_ENFORCE(
        len_dims[0] == x_dims[0],
        "Input(X) and Input(Length) should have the same first dimension.");

    int64_t out_dim_0 = -1;
    if (ctx->IsRuntime()) {
      out_dim_0 = x_dims[0] * x_dims[1];
    }

    std::vector<int64_t> out_dims_vec{out_dim_0};
    if (x_dims.size() == 2) {
      out_dims_vec.push_back(1);
    } else {
T
Tao Luo 已提交
55
      for (int i = 2; i < x_dims.size(); ++i) {
Y
Yibing Liu 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        out_dims_vec.push_back(x_dims[i]);
      }
    }
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims_vec));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("X"));
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class SequenceUnpadOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(LoDTensor, default LoDTensor<float>) Input tensor which "
             "contains the padded sequences with equal length.");
    AddInput("Length",
             "(LoDTensor) The input tensor which specifies the actual ength of "
             "sequences after unpadding.");
    AddOutput(
        "Out",
        "(LoDTensor) The output tensor which contains unpadded sequences.");
    AddComment(R"DOC(
      Sequence Unpad Operator

      This operator removes the padding data in the input sequences and convert 
      them into sequences with actual length as output, identitied by lod 
      information.

      Example:

      Given input tensor Input(X):
          X.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
                    [ 6.0,  7.0,  8.0,  9.0, 10.0],
                    [11.0, 12.0, 13.0, 14.0, 15.0]], 
`     
      in which there are 3 sequences padded to length 5, and the acutal length 
      specified by Input(Length):

          Length.data = [[2], [3], [4]],

      after unpadding, Output(Out) will be:

          Out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
          Out.lod = [[0, 2, 5, 9]]      

    )DOC");
  }
};

class SequenceUnpadGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequenceUnpadGradOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasInput(framework::GradVarName("Out")),
        "Input(Out@GRAD) of SequenceUnpadGradOp should not be null.");

    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
      ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
130 131
    auto data_type = framework::GetDataTypeOfVar(
        ctx.InputVar(framework::GradVarName("Out")));
Y
Yibing Liu 已提交
132 133 134 135
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
class SequenceUnpadGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("sequence_unpad_grad");
    op->SetAttrMap(Attrs());
    op->SetInput("X", Input("X"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
    SequenceUnpadGradOpNoNeedBufferVarsInference, "X");

Y
Yibing Liu 已提交
155 156 157 158 159
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(sequence_unpad, ops::SequenceUnpadOp,
160 161 162
                  ops::SequenceUnpadOpMaker, ops::SequenceUnpadGradOpDescMaker);
REGISTER_OPERATOR(sequence_unpad_grad, ops::SequenceUnpadGradOp,
                  ops::SequenceUnpadGradOpNoNeedBufferVarsInference);
Y
Yibing Liu 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175
REGISTER_OP_CPU_KERNEL(
    sequence_unpad,
    ops::SequenceUnpadOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceUnpadOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceUnpadOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceUnpadOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    sequence_unpad_grad,
    ops::SequenceUnpadGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceUnpadGradOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceUnpadGradOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceUnpadGradOpKernel<paddle::platform::CPUDeviceContext,
                                   int64_t>);