operator.h 6.0 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Yu Yang 已提交
17 18 19
#include <paddle/framework/attr_checker.h>
#include <paddle/framework/op_desc.pb.h>
#include <paddle/framework/scope.h>
Y
Yu Yang 已提交
20
#include <paddle/framework/tensor.h>
Y
Yu Yang 已提交
21 22 23
#include <paddle/platform/device_context.h>
#include <paddle/platform/place.h>
#include <paddle/utils/Error.h>
Q
Qiao Longfei 已提交
24 25 26 27 28 29 30 31
#include <boost/variant.hpp>
#include <string>
#include <unordered_map>
#include <vector>

namespace paddle {
namespace framework {

Q
qijun 已提交
32 33 34 35
template <typename T>
struct EigenDeviceConverter;

template <>
Q
qijun 已提交
36
struct EigenDeviceConverter<platform::CPUPlace> {
Q
qijun 已提交
37 38 39 40 41
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
Q
qijun 已提交
42
struct EigenDeviceConverter<platform::GPUPlace> {
Q
qijun 已提交
43 44 45 46
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

Q
Qiao Longfei 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class OperatorBase;

/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

  std::string DebugString() const;

Q
Qiao Longfei 已提交
68 69 70 71
  /// Init will be called after CreateOperator, you can put some initialization
  /// logic here.
  virtual void Init() {}

Q
Qiao Longfei 已提交
72 73 74 75 76 77
  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
  virtual void InferShape(const std::shared_ptr<Scope>& scope) const = 0;

  /// Net will call this function to Run an op.
  virtual void Run(const std::shared_ptr<Scope>& scope,
Y
Yu Yang 已提交
78 79 80 81
                   const platform::DeviceContext& dev_ctx) const = 0;

 protected:
  std::string Type() const { return desc_.type(); }
Q
Qiao Longfei 已提交
82 83 84 85 86 87 88 89

 public:
  OpDesc desc_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  AttributeMap attrs_;
};

Q
qijun 已提交
90 91
class OpKernel {
 public:
Q
qijun 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
  /**
   * KernelContext is the only parameter of Kernel Run function.
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
   * KernelContext. User should construct it before run the Operator.
   */
  class KernelContext {
   public:
    KernelContext(const OperatorBase* op, const std::shared_ptr<Scope>& scope,
                  const platform::DeviceContext& device_context)
        : op_(*op), scope_(scope), device_context_(device_context) {}

    const Variable* Input(int index) const {
      return scope_->GetVariable(op_.inputs_[index]);
    }

    Variable* Output(int index) const {
      return scope_->GetVariable(op_.outputs_[index]);
    }

    template <typename PlaceType,
              typename DeviceType =
                  typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
    DeviceType* get_eigen_device() const;

    const OperatorBase& op_;
    const std::shared_ptr<Scope>& scope_;
    const platform::DeviceContext& device_context_;
  };

Y
Yu Yang 已提交
122 123 124 125 126
  virtual void Compute(const KernelContext& context) const = 0;

  virtual ~OpKernel() {}
};

Y
Yu Yang 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139
template <typename T>
struct VarToTensor {};

template <>
struct VarToTensor<Tensor*> {
  Tensor* operator()(Variable* var) { return var->GetMutable<Tensor>(); }
};

template <>
struct VarToTensor<const Tensor*> {
  const Tensor* operator()(Variable* var) { return &var->Get<Tensor>(); }
};

Q
Qiao Longfei 已提交
140 141
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
142 143
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
144

Y
Yu Yang 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    OpKernelKey() = default;
    OpKernelKey(const platform::DeviceContext& dev_ctx) {
      place_ = dev_ctx.GetPlace();
    }

    bool operator==(const OpKernelKey& o) const { return place_ == o.place_; }
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
162 163

  void Run(const std::shared_ptr<Scope>& scope,
Y
Yu Yang 已提交
164 165 166
           const platform::DeviceContext& dev_ctx) const final {
    auto& opKernel = AllOpKernels().at(Type()).at(OpKernelKey(dev_ctx));
    opKernel->Compute(OpKernel::KernelContext(this, scope, dev_ctx));
Q
Qiao Longfei 已提交
167 168
  }

Y
Yu Yang 已提交
169 170 171 172
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
173 174 175 176 177 178 179
  }
  void InferShape(const std::shared_ptr<Scope>& scope) const final {
    std::vector<const Tensor*> ins;
    VarNamesToTensors(scope, inputs_, &ins);
    std::vector<Tensor*> outs;
    VarNamesToTensors(scope, outputs_, &outs);
    InferShape(ins, outs);
Y
Yu Yang 已提交
180
  };
Y
Yu Yang 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

 private:
  template <typename T>
  void VarNamesToTensors(const std::shared_ptr<Scope>& scope,
                         const std::vector<std::string>& var_names,
                         std::vector<T>* container) const {
    container->reserve(var_names.size());
    VarToTensor<T> convert;
    for (auto& name : var_names) {
      auto var = scope->GetVariable(name);
      if (var != nullptr) {
        container->push_back(convert(var));
      } else {
        container->push_back(nullptr);
      }
    }
  }

 protected:
  virtual void InferShape(const std::vector<const Tensor*>& inputs,
                          const std::vector<Tensor*>& outputs) const = 0;
Q
Qiao Longfei 已提交
202 203 204 205
};

}  // namespace framework
}  // namespace paddle