act.cc 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include "paddle/fluid/operators/jit/gen/act.h"
#include "paddle/fluid/operators/jit/registry.h"
#include "paddle/fluid/platform/cpu_info.h"

namespace paddle {
namespace operators {
namespace jit {
namespace gen {

T
tensor-tang 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
const float ALIGN32_BEG exp_float_consts[] ALIGN32_END = {
    REPEAT_8TIMES(1.f),
    REPEAT_8TIMES(2.f),
    REPEAT_8TIMES(0.5f),
    REPEAT_8TIMES(EXP_HIG),
    REPEAT_8TIMES(EXP_LOW),
    REPEAT_8TIMES(CEPHES_LOG2EF),
    REPEAT_8TIMES(CEPHES_EXP_C1),
    REPEAT_8TIMES(CEPHES_EXP_C2),
    REPEAT_8TIMES(CEPHES_EXP_P0),
    REPEAT_8TIMES(CEPHES_EXP_P1),
    REPEAT_8TIMES(CEPHES_EXP_P2),
    REPEAT_8TIMES(CEPHES_EXP_P3),
    REPEAT_8TIMES(CEPHES_EXP_P4),
    REPEAT_8TIMES(CEPHES_EXP_P5),
    REPEAT_8TIMES(EXP_MAX_INPUT),
    REPEAT_8TIMES(SIGMOID_THRESHOLD_MAX),
    REPEAT_8TIMES(SIGMOID_THRESHOLD_MIN)};
42

T
tensor-tang 已提交
43 44
const int ALIGN32_BEG exp_int_0x7f[] ALIGN32_END = {REPEAT_8TIMES(0x7f)};
int ALIGN32_BEG g_tmp_mem[16] ALIGN32_END = {0};
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

void VActJitCode::genCode() {
  int offset = 0;
  for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
    vmovups(ymm_src, ptr[param1 + offset]);
    act<ymm_t>(ymm_dst, ymm_src, type_);
    vmovups(ptr[param2 + offset], ymm_dst);
    offset += sizeof(float) * YMM_FLOAT_BLOCK;
  }
  int rest = num_ % YMM_FLOAT_BLOCK;
  while (rest > 0) {
    int block = XMM_FLOAT_BLOCK;
    if (rest >= 4) {
      block = 4;
      vmovups(xmm_src, ptr[param1 + offset]);
    } else if (rest >= 2) {
      block = 2;
      vmovq(xmm_src, ptr[param1 + offset]);
    } else {
      block = 1;
      vmovss(xmm_src, ptr[param1 + offset]);
    }
    act<xmm_t>(xmm_dst, xmm_src, type_);
    if (rest >= 4) {
      vmovups(ptr[param2 + offset], xmm_dst);
    } else if (rest >= 2) {
      vmovq(ptr[param2 + offset], xmm_dst);
    } else {
      vmovss(ptr[param2 + offset], xmm_dst);
    }
    offset += sizeof(float) * block;
    rest -= block;
  }
  ret();
}

#define DECLARE_ACT_CREATOR(name)                                            \
  class name##Creator : public JitCodeCreator<int> {                         \
   public:                                                                   \
    bool UseMe(const int& attr) const override {                             \
      return platform::MayIUse(platform::avx);                               \
    }                                                                        \
    size_t CodeSize(const int& d) const override;                            \
    std::unique_ptr<GenBase> CreateJitCode(const int& attr) const override { \
      return make_unique<name##JitCode>(attr, CodeSize(attr));               \
    }                                                                        \
  }

DECLARE_ACT_CREATOR(VRelu);
DECLARE_ACT_CREATOR(VIdentity);
DECLARE_ACT_CREATOR(VExp);
DECLARE_ACT_CREATOR(VSigmoid);
DECLARE_ACT_CREATOR(VTanh);

// TODO(TJ): tuning use me
size_t VReluCreator::CodeSize(const int& d) const {
  return 96 /* init size */ +
         (d / YMM_FLOAT_BLOCK + 3) * 4 /* instructions */ *
             8 /* average bytes for each instruction */;
}

size_t VIdentityCreator::CodeSize(const int& d) const {
  return 96 + (d / YMM_FLOAT_BLOCK + 3) * 4 * 8;
}

size_t VExpCreator::CodeSize(const int& d) const {
  return 96 + (d / YMM_FLOAT_BLOCK + 3) * 70 * 8;
}

size_t VSigmoidCreator::CodeSize(const int& d) const {
  return 96 + (d / YMM_FLOAT_BLOCK + 3) * 82 * 8;
}

size_t VTanhCreator::CodeSize(const int& d) const {
  return 96 + (d / YMM_FLOAT_BLOCK + 3) * 84 * 8;
}

#undef DECLARE_ACT_CREATOR

}  // namespace gen
}  // namespace jit
}  // namespace operators
}  // namespace paddle

namespace gen = paddle::operators::jit::gen;

T
tensor-tang 已提交
131 132 133 134 135
REGISTER_JITKERNEL_GEN(kVRelu, gen::VReluCreator);
REGISTER_JITKERNEL_GEN(kVIdentity, gen::VIdentityCreator);
REGISTER_JITKERNEL_GEN(kVExp, gen::VExpCreator);
REGISTER_JITKERNEL_GEN(kVSigmoid, gen::VSigmoidCreator);
REGISTER_JITKERNEL_GEN(kVTanh, gen::VTanhCreator);