uniform.py 2.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...fluid.initializer import UniformInitializer

17 18
__all__ = []

19 20

class Uniform(UniformInitializer):
21
    """The uniform distribution initializer.
22 23

    Args:
24 25 26
        low (float, optional): Lower boundary of the uniform distribution. The default value is :math:`-1.0`.
        high (float, optional): Upper boundary of the uniform distribution. The default value is :math:`1.0`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
27 28

    Returns:
29
        A parameter initialized by uniform distribution.
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.ones(shape=[3, 1, 2], dtype='float32')
            weight_attr = paddle.framework.ParamAttr(
                name="linear_weight",
                initializer=paddle.nn.initializer.Uniform(low=-0.5, high=0.5))
            bias_attr = paddle.framework.ParamAttr(
                name="linear_bias",
                initializer=paddle.nn.initializer.Uniform(low=-0.5, high=0.5))
            linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr, bias_attr=bias_attr)
            # linear.weight:  [[-0.46245047  0.05260676]
            #                  [ 0.38054508  0.29169726]]
            # linear.bias:  [-0.2734719   0.23939109]
            
            res = linear(data)
            # res:  [[[-0.3553773  0.5836951]]
            #        [[-0.3553773  0.5836951]]
            #        [[-0.3553773  0.5836951]]]
    """

    def __init__(self, low=-1.0, high=1.0, name=None):
        assert low is not None, 'low should not be None'
        assert high is not None, 'high should not be None'
        assert high >= low, 'high should greater or equal than low'
58 59 60 61 62 63
        super(Uniform, self).__init__(low=low,
                                      high=high,
                                      seed=0,
                                      diag_num=0,
                                      diag_step=0,
                                      diag_val=1.0)