layers.py 67.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
19
import six
20
import re
21 22 23
import copy
import weakref
import warnings
24
from copy import deepcopy
25 26
import inspect

27
import paddle
C
chenjian 已提交
28
import paddle.profiler as profiler
29
from paddle.profiler.utils import in_profiler_mode
30

C
chengduo 已提交
31
from . import parallel_helper
X
Xin Pan 已提交
32
from .. import unique_name
33
from paddle.fluid import core
34
from .layer_object_helper import LayerObjectHelper
35
from .layer_hooks import record_program_ops_pre_hook, set_op_customized_attrs_post_hook, LayerOpsRecoder
36
from .base import program_desc_tracing_guard, param_guard, in_declarative_mode, _convert_into_variable
37
from paddle.fluid import framework
38
from ..param_attr import ParamAttr
39
from paddle.fluid.executor import Executor, global_scope
40
from paddle.fluid.framework import _non_static_mode, convert_np_dtype_to_dtype_, in_dygraph_mode
41
from paddle.fluid.framework import _current_expected_place as _get_device
42
from paddle.fluid.core import VarDesc
C
chentianyu03 已提交
43
from paddle.fluid.dygraph import no_grad
W
wanghuancoder 已提交
44
import paddle.utils.deprecated as deprecated
45

46
__all__ = ['Layer']
47

48 49 50 51 52 53 54 55
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

56

57 58 59 60 61 62 63 64 65 66 67
def _addindent(string, indent):
    s1 = string.split('\n')
    if len(s1) == 1:
        return string
    s2 = []
    for idx, line in enumerate(s1):
        if idx > 0:
            s2.append(str((indent * ' ') + line))
    return s1[0] + '\n' + '\n'.join(s2)


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


J
Jiabin Yang 已提交
84
class Layer(object):
85 86
    """
    Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
87

88
    Parameters:
89 90
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
91 92 93
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
94
        dtype(str, optional): data type of this parameter.
95 96
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
97
                Default: "float32"
98

99 100
    Returns:
        None
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

    Examples:
        .. code-block:: python

            import paddle
            class MyLayer(paddle.nn.Layer):
                def __init__(self):
                    super(MyLayer, self).__init__()
                    self._linear = paddle.nn.Linear(1, 1)
                    self._dropout = paddle.nn.Dropout(p=0.5)
                def forward(self, input):
                    temp = self._linear(input)
                    temp = self._dropout(temp)
                    return temp
            x = paddle.randn([10, 1], 'float32')
            mylayer = MyLayer()
            mylayer.eval()  # set mylayer._dropout to eval mode
            out = mylayer(x)
            mylayer.train()  # set mylayer._dropout to train mode
            out = mylayer(x)
X
Xin Pan 已提交
121
    """
X
Xin Pan 已提交
122

123
    def __init__(self, name_scope=None, dtype="float32"):
124
        self.training = True
125
        if name_scope is None:
126 127
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
        self._full_name = unique_name.generate(name_scope)
128
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
129
        self._built = False
M
minqiyang 已提交
130
        self._dtype = dtype
J
Jiabin Yang 已提交
131
        self._init_in_dynamic_mode = framework._non_static_mode()
132

X
Xin Pan 已提交
133
        self._parameters = collections.OrderedDict()
134 135 136
        # Buffers the variable (not parameter) created in layer
        self._buffers = collections.OrderedDict()
        self._non_persistable_buffer_names_set = set()
X
Xin Pan 已提交
137
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
138
        self._loaddict_holder = collections.OrderedDict()
139

140 141 142 143
        # Record generated op_descs in this layer
        self._op_recorder = LayerOpsRecoder(ops=[], hooks=[])
        self._customized_attrs = {}

144 145 146
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

147 148 149
        self._casted_by_pure_fp16 = False

        self._state_dict_hooks = collections.OrderedDict()
150 151
        # Records orignal functions after @to_static to support to rollback
        self._original_funcs = collections.OrderedDict()
152

M
minqiyang 已提交
153
    def train(self):
154 155 156 157 158 159
        """
        Sets this Layer and all its sublayers to training mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                mylayer.train()  # set mylayer._dropout to train mode
                out = mylayer(x)

184
        """
185 186 187
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
J
Jiabin Yang 已提交
188
        if _non_static_mode():
189
            framework._dygraph_tracer().train_mode()
190 191 192
        # Layer-level setting
        self.training = True
        for layer in self.sublayers():
193
            layer.training = True
M
minqiyang 已提交
194 195

    def eval(self):
196 197 198 199 200 201
        """
        Sets this Layer and all its sublayers to evaluation mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                print(out)

225
        """
226 227 228
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
J
Jiabin Yang 已提交
229
        if _non_static_mode():
230
            framework._dygraph_tracer().eval_mode()
231 232 233
        # Layer-level setting
        self.training = False
        for layer in self.sublayers():
234
            layer.training = False
M
minqiyang 已提交
235

L
LielinJiang 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    def apply(self, fn):
        """
        Applies ``fn`` recursively to every sublayer (as returned by ``.sublayers()``)
        as well as self. Typical use includes initializing the parameters of a model.

        Parameters:
            fn (function): a function to be applied to each sublayer

        Returns:
            Layer: self

        Example::
            .. code-block:: python

              import paddle
              import paddle.nn as nn
252

L
LielinJiang 已提交
253 254 255 256 257
              net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))

              def init_weights(layer):
                  if type(layer) == nn.Linear:
                      print('before init weight:', layer.weight.numpy())
258
                      new_weight = paddle.full(shape=layer.weight.shape, dtype=layer.weight.dtype, fill_value=0.9)
L
LielinJiang 已提交
259 260 261 262 263 264 265
                      layer.weight.set_value(new_weight)
                      print('after init weight:', layer.weight.numpy())

              net.apply(init_weights)

              print(net.state_dict())
        """
266
        for layer in self.children():
L
LielinJiang 已提交
267 268 269 270 271 272
            layer.apply(fn)

        fn(self)

        return self

X
Xin Pan 已提交
273
    def full_name(self):
274
        """Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
275

276 277
        Returns:
            str: full name of this layer.
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

        Example::
            .. code-block:: python

                import paddle

                class LinearNet(paddle.nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__(name_scope = "demo_linear_net")
                        self._linear = paddle.nn.Linear(1, 1)

                    def forward(self, x):
                        return self._linear(x)

                linear_net = LinearNet()
                print(linear_net.full_name())   # demo_linear_net_0

X
Xin Pan 已提交
295 296 297
        """
        return self._full_name

298 299 300 301 302
    def register_forward_post_hook(self, hook):
        """Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
303

304 305 306 307 308 309 310 311 312 313 314
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

315 316 317 318 319 320
                import paddle
                import numpy as np

                # the forward_post_hook change the output of the layer: output = output * 2
                def forward_post_hook(layer, input, output):
                    # user can use layer, input and output for information statistis tasks
321

322 323
                    # change the output
                    return output * 2
324

325
                linear = paddle.nn.Linear(13, 5)
326

327 328
                # register the hook
                forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
329

330 331
                value1 = np.arange(26).reshape(2, 13).astype("float32")
                in1 = paddle.to_tensor(value1)
332

333
                out0 = linear(in1)
334

335 336 337 338 339 340 341
                # remove the hook
                forward_post_hook_handle.remove()

                out1 = linear(in1)

                # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                assert (out0.numpy() == (out1.numpy()) * 2).any()
342 343 344 345 346 347 348
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
        """Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
349

350
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
351
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if
352 353 354 355 356 357 358 359 360 361 362 363 364 365
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

366 367
                import paddle
                import numpy as np
368

369
                # the forward_pre_hook change the input of the layer: input = input * 2
370 371
                def forward_pre_hook(layer, input):
                    # user can use layer and input for information statistis tasks
372

373 374 375
                    # change the input
                    input_return = (input[0] * 2)
                    return input_return
376

377
                linear = paddle.nn.Linear(13, 5)
378

379 380
                # register the hook
                forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)
381

382 383 384
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                in0 = paddle.to_tensor(value0)
                out0 = linear(in0)
385

386 387
                # remove the hook
                forward_pre_hook_handle.remove()
388

389 390 391
                value1 = value0 * 2
                in1 = paddle.to_tensor(value1)
                out1 = linear(in1)
392

393 394
                # hook change the linear's input to input * 2, so out0 is equal to out1.
                assert (out0.numpy() == out1.numpy()).any()
395 396 397 398 399
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

400 401
    def create_parameter(self,
                         shape,
402
                         attr=None,
403
                         dtype=None,
404 405
                         is_bias=False,
                         default_initializer=None):
406
        """Create parameters for this layer.
407

408
        Parameters:
409
            shape(list): Shape of the parameter.
410 411
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_paddle_ParamAttr`. Default: None.
            dtype(str, optional): Data type of this parameter.
412
                If set str, it can be "bool",  "float16", "float32", "float64",
413 414
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
415
            default_initializer(Initializer, optional): the default initializer for this parameter.
416
                If set None, default initializer will be set to paddle.nn.initializer.Xavier and paddle.nn.initializer.Constant
417
                for non-bias and bias parameter, respectively. Default: None.
418

419
        Returns:
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
            :Tensor, created parameter.

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

441
        """
H
hong 已提交
442 443 444 445
        temp_attr = copy.deepcopy(attr)
        if isinstance(temp_attr, six.string_types) and temp_attr == "":
            temp_attr = None
        return self._helper.create_parameter(temp_attr, shape, dtype, is_bias,
446 447
                                             default_initializer)

448 449 450
    @deprecated(since="2.0.0",
                update_to="paddle.nn.Layer.create_tensor",
                reason="New api in create_tensor, easier to use.")
451
    def create_variable(self, name=None, persistable=None, dtype=None):
W
wanghuancoder 已提交
452 453 454
        """

        Create Tensor for this layer.
455

456
        Parameters:
W
wanghuancoder 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None

            persistable(bool, optional): if set this tensor persistable. Default: False

            dtype(str, optional): data type of this parameter. If set str, it can be "bool", "float16", "float32", "float64","int8", "int16", "int32", "int64", "uint8" or "uint16". If set None, it will be "float32". Default: None

        Returns:
            Tensor, created Tensor.

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
477

W
wanghuancoder 已提交
478
                        self.back_var = self.create_variable(name = "linear_tmp_0", dtype=self._dtype)
479

W
wanghuancoder 已提交
480 481 482
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
483

W
wanghuancoder 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
                        return out

        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)

    # TODO: Add more parameter list when we need them
    def create_tensor(self, name=None, persistable=None, dtype=None):
        """

        Create Tensor for this layer.

        Parameters:
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this tensor persistable. Default: False
508
            dtype(str, optional): data type of this parameter.
509 510
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
511
                If set None, it will be "float32". Default: None
512

513
        Returns:
W
wanghuancoder 已提交
514
            Tensor, created Tensor.
515 516 517 518 519 520 521 522 523 524 525 526

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
527

W
wanghuancoder 已提交
528
                        self.back_var = self.create_tensor(name = "linear_tmp_0", dtype=self._dtype)
529

530 531 532
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
533

534 535
                        return out

536 537 538 539 540 541 542 543
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
544 545 546 547
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)
548

X
polish  
Xin Pan 已提交
549
    def parameters(self, include_sublayers=True):
550
        """Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
551

552
        Returns:
553 554 555 556 557 558 559 560 561 562
            list of Tensor : a list of Parameters.

        Examples:
            .. code-block:: python

            import paddle

            linear = paddle.nn.Linear(1,1)
            print(linear.parameters())  # print linear_0.w_0 and linear_0.b_0

X
Xin Pan 已提交
563
        """
564
        ret = [
565
            param for _, param in self.named_parameters(
566 567
                include_sublayers=include_sublayers)
        ]
X
polish  
Xin Pan 已提交
568
        return ret
X
Xin Pan 已提交
569

570 571 572 573 574 575 576 577 578
    def children(self):
        """Returns an iterator over immediate children layers.

        Yields:
            Layer: a child layer

        Examples:
            .. code-block:: python

579
                import paddle
580

581 582 583 584 585
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)

                layer_list = list(model.children())
586

587
                print(layer_list)   # [<paddle.nn.layer.common.Linear object at 0x7f7b8113f830>, <paddle.nn.layer.common.Linear object at 0x7f7b8113f950>]
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

        """
        for _, layer in self.named_children():
            yield layer

    def named_children(self):
        """Returns an iterator over immediate children layers, yielding both
        the name of the layer as well as the layer itself.

        Yields:
            (string, Layer): Tuple containing a name and child layer

        Examples:
            .. code-block:: python

603
                import paddle
604

605 606 607 608 609 610 611
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)
                for prefix, layer in model.named_children():
                    print(prefix, layer)
                    # ('0', <paddle.nn.layer.common.Linear object at 0x7fb61ed85830>)
                    # ('1', <paddle.nn.layer.common.Linear object at 0x7fb61ed85950>)
612 613 614 615 616 617 618 619

        """
        memo = set()
        for name, layer in self._sub_layers.items():
            if layer is not None and layer not in memo:
                memo.add(layer)
                yield name, layer

J
Jiabin Yang 已提交
620
    def sublayers(self, include_self=False):
X
Xin Pan 已提交
621 622
        """Returns a list of sub layers.

623
        Parameters:
J
Jiabin Yang 已提交
624
            include_self(bool, optional): Whether return self as sublayers. Default: False
X
Xin Pan 已提交
625

626 627
        Returns:
            list of Layer : a list of sub layers.
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                mylayer = MyLayer()
                print(mylayer.sublayers())  # [<paddle.nn.layer.common.Linear object at 0x7f44b58977d0>, <paddle.nn.layer.common.Dropout object at 0x7f44b58978f0>]

X
Xin Pan 已提交
648
        """
649 650
        ret = [
            layer
J
Jiabin Yang 已提交
651
            for _, layer in self.named_sublayers(include_self=include_self)
652
        ]
X
Xin Pan 已提交
653 654
        return ret

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

670
                import paddle
671

672 673 674 675 676
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for name, param in model.named_parameters():
                    print(name, param)
677 678 679 680

        """
        params_set = set()
        named_sublayers = self.named_sublayers(
681 682
            prefix=prefix, include_self=True) if include_sublayers else zip(
                [prefix], [self])
683 684 685 686 687 688 689 690 691
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

J
Jiabin Yang 已提交
692
    def named_sublayers(self, prefix='', include_self=False, layers_set=None):
693 694 695 696 697 698 699
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
700
            layers_set(set, optional): The set to record duplicate sublayers. Default: None.
701 702 703 704 705 706 707

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

708
                import paddle
709

710 711 712 713 714
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
715 716 717 718 719 720 721

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
J
Jiabin Yang 已提交
722 723 724 725
        for key, layer in self._sub_layers.items():
            if layer is None:
                continue
            layer_prefix = prefix + ('.' if prefix else '') + key
726 727 728
            for p, l in layer.named_sublayers(prefix=layer_prefix,
                                              include_self=True,
                                              layers_set=layers_set):
J
Jiabin Yang 已提交
729
                yield p, l
730

731
    def register_buffer(self, name, tensor, persistable=True):
732
        """
733
        Registers a tensor as buffer into the layer.
734

735
        `buffer` is a non-trainable tensor and will not be updated by optimizer,
736 737 738 739 740 741 742 743 744 745
        but is necessary for evaluation and inference. For example, the mean and variance in BatchNorm layers.
        The registered buffer is persistable by default, and will be saved into
        `state_dict` alongside parameters. If set persistable=False, it registers
        a non-persistable buffer, so that it will not be a part of `state_dict` .

        Buffers can be accessed as attributes using given names.

        Parameters:
            name (string): name of the buffer. The buffer can be accessed
                from this layer using the given name
746
            tensor (Tensor): the tensor to be registered as buffer.
747 748 749 750 751
            persistable (bool): whether the buffer is part of this layer's
                state_dict.

        Returns:
            None
752

753 754 755 756
        Examples:
            .. code-block:: python

                import numpy as np
757
                import paddle
758

759 760 761 762 763 764 765
                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                # get the buffer by attribute.
                print(linear.buf_name)
766 767 768 769 770 771 772 773 774 775 776

        """

        if '_buffers' not in self.__dict__:
            raise ValueError(
                "super(YourLayer, self).__init__() should be called first")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of buffer should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
777 778 779 780
            raise KeyError(
                "The name of buffer can not contain `.`, "
                "because when you access the newly added buffer in the "
                "form of `self.**.**`, it will cause AttributeError.")
781 782 783 784
        elif name == '':
            raise KeyError("The name of buffer can not be empty.")
        elif hasattr(self, name) and name not in self._buffers:
            raise KeyError("attribute '{}' already exists.".format(name))
785 786
        elif tensor is not None and not (type(tensor) == core.VarBase
                                         or type(tensor) == core.eager.Tensor):
787
            raise TypeError(
788 789
                "The registered buffer should be a Paddle.Tensor, but received {}."
                .format(type(tensor).__name__))
790
        else:
791
            self._buffers[name] = tensor
792 793 794 795 796 797 798 799 800 801 802 803 804
            if persistable:
                self._non_persistable_buffer_names_set.discard(name)
            else:
                self._non_persistable_buffer_names_set.add(name)

    def buffers(self, include_sublayers=True):
        """
        Returns a list of all buffers from current layer and its sub-layers.

        Parameters:
            include_sublayers(bool, optional): Whether include the buffers of sublayers. If True, also include the buffers from sublayers. Default: True

        Returns:
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
            list of Tensor : a list of buffers.

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle

                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                print(linear.buffers())     # == print([linear.buf_name])

820 821
        """
        ret = [
822
            buffer for _, buffer in self.named_buffers(
823 824 825 826 827 828
                include_sublayers=include_sublayers)
        ]
        return ret

    def named_buffers(self, prefix='', include_sublayers=True):
        """
829
        Returns an iterator over all buffers in the Layer, yielding tuple of name and Tensor.
830 831 832 833 834 835 836

        Parameters:
            prefix(str, optional): Prefix to prepend to all buffer names. Default: ''.
            include_sublayers(bool, optional): Whether include the buffers of sublayers.
                If True, also include the named buffers from sublayers. Default: True.

        Yields:
837
            (string, Tensor): Tuple of name and tensor
838 839 840 841 842

        Examples:
            .. code-block:: python

                import numpy as np
843
                import paddle
844

845 846 847 848
                fc1 = paddle.nn.Linear(10, 3)
                buffer1 = paddle.to_tensor(np.array([0]).astype("float32"))
                # register a tensor as buffer by specific `persistable`
                fc1.register_buffer("buf_name_1", buffer1, persistable=True)
849

850 851 852 853 854
                fc2 = paddle.nn.Linear(3, 10)
                buffer2 = paddle.to_tensor(np.array([1]).astype("float32"))
                # register a buffer by assigning an attribute with Tensor.
                # The `persistable` can only be False by this way.
                fc2.buf_name_2 = buffer2
855

856
                model = paddle.nn.Sequential(fc1, fc2)
857

858 859 860
                # get all named buffers
                for name, buffer in model.named_buffers():
                    print(name, buffer)
861 862 863 864

        """
        buffers_set = set()
        named_sublayers = self.named_sublayers(
865 866
            prefix=prefix, include_self=True) if include_sublayers else zip(
                [prefix], [self])
867 868 869 870 871 872 873 874 875
        for layer_prefix, sublayer in named_sublayers:
            buffers = sublayer._buffers.items()
            for key, buffer in buffers:
                if buffer is None or buffer in buffers_set:
                    continue
                buffers_set.add(buffer)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, buffer

X
Xin Pan 已提交
876
    def clear_gradients(self):
877 878
        """
        Clear the gradients of all parameters for this layer.
879

880 881
        Returns:
            None
882

883 884 885
        Examples:
            .. code-block:: python

886
                import paddle
887 888
                import numpy as np

889 890 891 892 893 894 895 896 897
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
                linear = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01,
                                            parameters=linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                linear.clear_gradients()
898 899

        """
X
Xin Pan 已提交
900
        for p in self.parameters():
901 902
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
903

904
    def _build_once(self, *args, **kwargs):
905 906
        pass

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    def _dygraph_call_func(self, *inputs, **kwargs):
        for forward_pre_hook in self._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
                    hook_result = (hook_result, )
                inputs = hook_result

        if not self._built:
            with program_desc_tracing_guard(False):
                self._build_once(*inputs, **kwargs)

                # TODO(liuyuhui) Only xpu broadcast parameters here.
                # The other device is to call _sync_params_buffers in DataParallel
                # to realize the parameter synchronization among multiply cards.
                if parallel_helper._is_data_parallel_mode(
                ) and paddle.is_compiled_with_xpu():
                    parallel_helper._broadcast_parameters(
                        self._parameters.values())

            self._built = True

929 930 931 932 933
        if in_profiler_mode():
            with profiler.RecordEvent(self.full_name(),
                                      profiler.TracerEventType.Forward):
                outputs = self.forward(*inputs, **kwargs)
        else:
C
chenjian 已提交
934
            outputs = self.forward(*inputs, **kwargs)
935 936 937 938 939 940 941 942

        for forward_post_hook in self._forward_post_hooks.values():
            hook_result = forward_post_hook(self, inputs, outputs)
            if hook_result is not None:
                outputs = hook_result

        return outputs

943
    def __call__(self, *inputs, **kwargs):
944
        if (not in_declarative_mode()) and (not self._forward_pre_hooks) \
945
            and (not self._forward_post_hooks) and (not self._built) and in_dygraph_mode() and (not in_profiler_mode()):
946 947 948 949
            self._build_once(*inputs, **kwargs)
            return self.forward(*inputs, **kwargs)
        else:
            return self._dygraph_call_func(*inputs, **kwargs)
M
minqiyang 已提交
950

951
    def forward(self, *inputs, **kwargs):
952 953 954 955 956 957 958 959
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
960
        raise NotImplementedError
X
Xin Pan 已提交
961 962 963 964

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
965 966 967
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

968
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
969

970 971 972
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
973
        Returns:
974
            Layer: the sublayer passed in.
975

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
        Examples:
            .. code-block:: python

                import paddle

                class MySequential(paddle.nn.Layer):
                    def __init__(self, *layers):
                        super(MySequential, self).__init__()
                        if len(layers) > 0 and isinstance(layers[0], tuple):
                            for name, layer in layers:
                                self.add_sublayer(name, layer)
                        else:
                            for idx, layer in enumerate(layers):
                                self.add_sublayer(str(idx), layer)

                    def forward(self, input):
                        for layer in self._sub_layers.values():
                            input = layer(input)
                        return input

                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = MySequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
X
Xin Pan 已提交
1001
        """
J
Jiabin Yang 已提交
1002
        assert (isinstance(sublayer, Layer) or sublayer == None)
1003

X
Xin Pan 已提交
1004 1005 1006 1007 1008 1009
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

1010
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
1011

1012 1013 1014
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
1015
        Returns:
1016
            Parameter: the parameter passed in.
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

X
Xin Pan 已提交
1036
        """
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
        if '_parameters' not in self.__dict__:
            raise RuntimeError(
                "super(YourLayer, self).__init__() should be called firstly.")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of parameter should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
            raise KeyError(
                "The name of parameter can not contain `.`, "
                "because when you access the newly added parameter in the "
                "form of `self.**.**`, it will cause AttributeError.")
        elif name == '':
            raise KeyError("The name of parameter can not be empty.")
        elif hasattr(self, name) and name not in self._parameters:
            raise KeyError("The parameter '{}' already exists.".format(name))
        elif parameter is not None and not isinstance(parameter,
                                                      framework.Parameter):
1055
            raise TypeError(
1056 1057
                "The parameter to be added should be a Parameter, but received {}."
                .format(type(parameter).__name__))
1058 1059 1060
        else:
            if parameter is None:
                self._parameters[name] = None
1061

1062 1063 1064
            if len(self._loaddict_holder) > 0:
                assert parameter.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
                    parameter.name)
H
hong 已提交
1065

1066
                parameter.set_value(self._loaddict_holder[parameter.name])
1067

1068
            self._parameters[name] = parameter
X
Xin Pan 已提交
1069 1070
        return parameter

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
    def _set_op_attrs(self, attrs):
        """
        Add customized attribute while append_op. In case of quantization, we want to save
        some attributes into op_desc while exporting inference model by @to_static.

        Arguments:
            attrs(dict): customized attributes that will be added into op_descs.

        NOTE: The interface is only exposed to developers.
        """

        def is_already_registered(is_pre_hook):
            layers_hooks = self._forward_pre_hooks if is_pre_hook else self._forward_post_hooks
            candidate_hook = record_program_ops_pre_hook if is_pre_hook else set_op_customized_attrs_post_hook

            already_registed = False
            if layers_hooks:
                last_key = next(reversed(layers_hooks))
                already_registed = (layers_hooks[last_key] == candidate_hook)

            return already_registed

        if not isinstance(attrs, dict):
1094 1095 1096
            raise TypeError(
                "attrs should be type(dict), but received {}".format(
                    type(attrs).__name__))
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

        # NOTE: Overwrite behavior for same key.
        self._customized_attrs.update(attrs)

        if not is_already_registered(is_pre_hook=True):
            pre_hook_helper = self.register_forward_pre_hook(
                record_program_ops_pre_hook)
            assert len(self._op_recorder.hooks) == 0
            self._op_recorder.hooks = [pre_hook_helper]

        # manually register post_hook to ensure it is inserted into the head.
        if not is_already_registered(is_pre_hook=False):
            post_hook_helper = self.register_forward_post_hook(
                set_op_customized_attrs_post_hook)
            if len(self._forward_post_hooks) > 1:
1112 1113
                self._forward_post_hooks.move_to_end(post_hook_helper._hook_id,
                                                     last=False)
1114 1115 1116 1117 1118 1119

            assert len(self._op_recorder.hooks) == 1

            # hooks that need to be removed once we finish executing them.
            self._op_recorder.hooks.append(post_hook_helper)

1120 1121 1122 1123 1124 1125
    def __getstate__(self):
        return self.__dict__

    def __setstate__(self, state):
        self.__dict__.update(state)

X
Xin Pan 已提交
1126
    def __getattr__(self, name):
1127 1128 1129
        if '_parameters' in self.__dict__:
            _parameters = self.__dict__['_parameters']
            if name in self._parameters:
1130
                if in_declarative_mode():
1131
                    return _convert_into_variable(self._parameters[name])
1132 1133 1134 1135 1136 1137 1138 1139
                return self._parameters[name]
        if '_sub_layers' in self.__dict__:
            _sub_layers = self.__dict__['_sub_layers']
            if name in self._sub_layers:
                return self._sub_layers[name]
        if '_buffers' in self.__dict__:
            _buffers = self.__dict__['_buffers']
            if name in _buffers:
1140
                if in_declarative_mode():
1141
                    return _convert_into_variable(_buffers[name])
1142 1143
                return _buffers[name]
        return object.__getattribute__(self, name)
X
Xin Pan 已提交
1144 1145

    def __setattr__(self, name, value):
1146

S
songyouwei 已提交
1147 1148 1149 1150 1151
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

1152 1153
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
1154
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
1155 1156 1157 1158
        if isinstance(value, framework.Parameter):
            if params is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
H
hong 已提交
1159
            if len(self._loaddict_holder) > 0:
1160
                assert value.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
H
hong 已提交
1161 1162 1163 1164
                    value.name)

                value.set_value(self._loaddict_holder[value.name])

1165
            _remove_if_exist(self.__dict__, self._buffers, self._sub_layers)
1166
            params[name] = value
1167 1168 1169 1170
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'"
1171 1172
                    .format(name,
                            type(value).__name__))
1173
            params[name] = None
X
Xin Pan 已提交
1174
        else:
1175
            layers = self.__dict__.get('_sub_layers', None)
J
Jiabin Yang 已提交
1176
            if isinstance(value, Layer):
1177 1178 1179 1180 1181
                if layers is None:
                    raise ValueError(
                        "super(YourLayer, self).__init__() should be called first"
                    )

1182
                _remove_if_exist(self.__dict__, self._parameters, self._buffers)
1183 1184 1185 1186 1187
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'"
1188 1189
                        .format(name,
                                type(value).__name__))
1190 1191
                layers[name] = None
            else:
1192
                _buffers = self.__dict__.get('_buffers', None)
W
wanghuancoder 已提交
1193
                if isinstance(value, (core.VarBase, core.eager.Tensor)):
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
                    if _buffers is None:
                        raise ValueError(
                            "super(YourLayer, self).__init__() should be called first"
                        )
                    _remove_if_exist(self.__dict__, self._parameters,
                                     self._sub_layers)
                    # Set persistable=False by default. Only `register_buffer` can
                    # add a persistable buffer.
                    if name not in self._buffers:
                        self._non_persistable_buffer_names_set.add(name)
1204 1205
                    if not value.name:
                        value.name = unique_name.generate('_buffers_' + name)
1206 1207
                    _buffers[name] = value
                elif _buffers is not None and name in _buffers:
1208
                    # Note(Aurelius84): In Dy2stat, the value of the Buffer may be modified in
1209 1210 1211 1212
                    # decorated function, such as `self.buffer = new_tensor`. So we update its
                    # value via `assign`.
                    if type(value) == framework.Variable:
                        from paddle import assign
1213 1214 1215 1216
                        # Note(zhhsplendid): the condition below happens in PaddleGan model,
                        # but should all non-Variable _buffers[name] be re-assign? We
                        # should consider it in the future. I current wrote this as
                        # conservative code.
1217 1218 1219
                        if in_declarative_mode() and _buffers[name] is None:
                            raise RuntimeError(
                                'In Dy2stat, self.{0} is a buffer and self.{0} is '
1220 1221 1222 1223
                                'not allowed to be set to Variable when self.{0} is None.'
                                .format(name))
                        elif _buffers[name] is None or type(getattr(
                                self, name)) == core.VarBase:
1224 1225
                            _buffers[name] = assign(value)
                        else:
1226
                            assign(value, getattr(self, name))
1227
                    elif value is not None:
1228 1229
                        raise TypeError(
                            "assignment to buffers '{}' should be of type core.VarBase or None, but got '{}'"
1230 1231
                            .format(name,
                                    type(value).__name__))
1232 1233 1234 1235
                    else:
                        # Assigning None will remove the buffer, but if re-assign a new varBase to it,
                        # it will be remarked as a buffer with same `persistable` attribute.
                        _buffers[name] = None
1236 1237
                else:
                    object.__setattr__(self, name, value)
X
Xin Pan 已提交
1238 1239 1240 1241 1242 1243

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
1244 1245 1246
        elif name in self._buffers:
            del self._buffers[name]
            self._non_persistable_buffer_names_set.discard(name)
X
Xin Pan 已提交
1247 1248 1249
        else:
            object.__delattr__(self, name)

1250 1251
    def __dir__(self):
        """
W
wanghuancoder 已提交
1252
        Return a list. Get all parameters, buffers(non-parameter tensors), sublayers, method and attr of Layer.
1253 1254

        Examples:
1255 1256 1257
            .. code-block:: python
                import paddle
                import numpy as np
1258

1259 1260 1261 1262 1263
                class Mylayer(paddle.nn.Layer):
                    def __init__(self):
                        super(Mylayer, self).__init__()
                        self.linear1 = paddle.nn.Linear(10, 10)
                        self.linear2 = paddle.nn.Linear(5, 5)
C
cnn 已提交
1264
                        self.conv2d = paddle.nn.Conv2D(3, 2, 3)
1265 1266
                        self.embedding = paddle.nn.Embedding(128, 16)
                        self.h_0 = paddle.to_tensor(np.zeros([10, 10]).astype('float32'))
1267

1268 1269 1270 1271
                mylayer = Mylayer()
                print(dir(mylayer))
                # only parts are shown, because of list have too much content
                # ['__call__', '__class__',  ... , 'conv2d', 'embedding', 'h_0', 'linear1', 'linear2', ... , 'sublayers', 'train']
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

        """
        method = dir(self.__class__)
        attrs = list(self.__dict__.keys())
        parameters = list(self._parameters.keys())
        sublayers = list(self._sub_layers.keys())
        buffers = list(self._buffers.keys())

        keys = method + attrs + parameters + sublayers + buffers

        return keys

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    def extra_repr(self):
        """
        Extra representation of this layer, you can have custom implementation
        of your own layer.
        """
        return ''

    def __repr__(self):
        extra_lines = []
        extra_repr = self.extra_repr()
        extra_lines = extra_repr.split('\n')
        sublayer_lines = []
        for name, layer in self._sub_layers.items():
            sublayer_str = repr(layer)
            sublayer_str = _addindent(sublayer_str, 2)
            sublayer_lines.append('(' + name + '): ' + sublayer_str)

        final_str = self.__class__.__name__ + '('
        if extra_lines:
            if len(extra_lines) > 1:
                final_str += '\n  ' + '\n  '.join(extra_lines) + '\n'
            elif len(extra_lines) == 1:
                final_str += extra_lines[0]
        if sublayer_lines:
            final_str += '\n  ' + '\n  '.join(sublayer_lines) + '\n'

        final_str += ')'
        return final_str

1313 1314 1315 1316 1317
    def register_state_dict_hook(self, hook):
        hook_remove_helper = HookRemoveHelper(self._state_dict_hooks)
        self._state_dict_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

1318 1319 1320
    def _obtain_parameters_buffers(self,
                                   destination=None,
                                   include_sublayers=True,
S
ShenLiang 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
                                   structured_name_prefix=""):
        """
        The difference from state_dict() is that state_dict_hook will not be called, 
        but the original types of parameters and buffers will be maintained.
        """
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[structured_name_prefix + name] = data
        for name, buffer in self._buffers.items():
            if buffer is not None and name not in self._non_persistable_buffer_names_set:
                destination[structured_name_prefix + name] = buffer

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item._obtain_parameters_buffers(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + "."))
                    destination = destination_temp
        return destination

    def _state_dict_impl(self,
                         destination=None,
                         include_sublayers=True,
                         structured_name_prefix="",
1350 1351
                         include_non_persistable_buffer=False,
                         use_hook=True):
1352 1353 1354 1355 1356 1357 1358
        """
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
            include_non_persistable_buffer(bool, optional): If true, include non persistable buffers of current layer and its sub-layers, it is used in pure fp16 and jit.save. Default: False
1359
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
        """

        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[structured_name_prefix + name] = data
        for name, buffer in self._buffers.items():
            if not include_non_persistable_buffer:
                if buffer is not None and name not in self._non_persistable_buffer_names_set:
                    destination[structured_name_prefix + name] = buffer
            else:
                if buffer is not None:
                    destination[structured_name_prefix + name] = buffer

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item._state_dict_impl(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + ".",
1383
                            include_non_persistable_buffer, use_hook))
1384
                    destination = destination_temp
1385 1386 1387 1388 1389
        if use_hook:
            for state_dict_hook in self._state_dict_hooks.values():
                hook_result = state_dict_hook(destination)
                if hook_result is not None:
                    destination = hook_result
1390 1391 1392 1393 1394 1395

        return destination

    def to_static_state_dict(self,
                             destination=None,
                             include_sublayers=True,
1396 1397
                             structured_name_prefix="",
                             use_hook=True):
1398 1399 1400 1401 1402 1403
        '''
        Get all parameters and buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
1404
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1405

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
        Retruns:
            dict: a dict contains all the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle

                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.to_static_state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")

        '''
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
1424 1425
            include_non_persistable_buffer=True,
            use_hook=use_hook)
1426

H
hong 已提交
1427 1428 1429
    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
1430 1431
                   structured_name_prefix="",
                   use_hook=True):
H
hong 已提交
1432
        '''
1433
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
H
hong 已提交
1434

1435
        Parameters:
1436 1437
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
1438
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1439

H
hong 已提交
1440
        Retruns:
1441
            dict: a dict contains all the parameters and persistable buffers.
H
hong 已提交
1442 1443

        Examples:
1444 1445
            .. code-block:: python

1446
                import paddle
H
hong 已提交
1447

1448 1449 1450 1451
                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")
H
hong 已提交
1452 1453

        '''
1454 1455 1456 1457
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
1458 1459
            include_non_persistable_buffer=False,
            use_hook=use_hook)
1460

1461
    @framework.deprecate_stat_dict
J
Jiabin Yang 已提交
1462
    def set_state_dict(self, state_dict, use_structured_name=True):
H
hong 已提交
1463
        '''
1464
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
H
hong 已提交
1465

1466
        Parameters:
1467
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
1468
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key.
H
hong 已提交
1469
                                                  Default: True
H
hong 已提交
1470 1471 1472 1473
        Returns:
            None

        Examples:
1474 1475
            .. code-block:: python

1476
                import paddle
1477

1478
                emb = paddle.nn.Embedding(10, 10)
H
hong 已提交
1479

1480
                state_dict = emb.state_dict()
1481 1482
                paddle.save(state_dict, "paddle_dy.pdparams")
                para_state_dict = paddle.load("paddle_dy.pdparams")
1483
                emb.set_state_dict(para_state_dict)
H
hong 已提交
1484

H
hong 已提交
1485 1486
        '''

1487 1488 1489
        def _check_match(key, param):
            state = state_dict.get(key, None)
            if state is None:
1490 1491
                raise ValueError(
                    "{} is not found in the provided dict.".format(key))
S
Steffy-zxf 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
            if (isinstance(state, dict) or isinstance(state, list)):
                if (len(state) != len(param)):
                    raise ValueError("{} receieves the length of {}, "
                                     "but the expected shape is {}".format(
                                         key, len(state), len(param)))
                else:
                    return param, state
            else:
                state_shape = state.shape() if inspect.ismethod(
                    state.shape) else state.shape

                if list(state_shape) != list(param.shape):
                    raise ValueError(
                        "{} receives a shape {}, but the expected shape is {}.".
                        format(key, list(state_shape), list(param.shape)))
                return param, state
1508 1509

        matched_param_state = []
1510
        for key, param in self.state_dict(use_hook=False).items():
1511 1512 1513 1514 1515 1516 1517
            key_name = key if use_structured_name else param.name
            try:
                match_res = _check_match(key_name, param)
                matched_param_state.append(match_res)
            except ValueError as err:
                warnings.warn(("Skip loading for {}. ".format(key) + str(err)))

J
Jiabin Yang 已提交
1518
        if _non_static_mode():
1519 1520 1521
            for param, state in matched_param_state:
                param.set_value(state)
        else:
H
hong 已提交
1522

1523 1524 1525 1526 1527 1528 1529
            def _set_var(var, ndarray):
                t = global_scope().find_var(var.name).get_tensor()
                p = t._place()
                if p.is_cpu_place():
                    place = core.CPUPlace()
                elif p.is_cuda_pinned_place():
                    place = core.CUDAPinnedPlace()
1530 1531 1532 1533
                elif p.is_xpu_place():
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.XPUPlace(p.xpu_device_id())
1534 1535 1536 1537 1538 1539 1540 1541 1542
                else:
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.CUDAPlace(p.gpu_device_id())
                t.set(ndarray, place)

            executor = Executor(_get_device())._default_executor
            # restore parameter states
            core._create_loaded_parameter(
1543 1544
                [param for param, state in matched_param_state], global_scope(),
                executor)
1545 1546 1547
            for param, state in matched_param_state:
                _set_var(param, state)

C
chentianyu03 已提交
1548 1549 1550 1551 1552
    def to(self, device=None, dtype=None, blocking=None):
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
1553 1554 1555 1556
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored.
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None.

1557
            dtype(str|numpy.dtype|paddle.dtype|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.
C
chentianyu03 已提交
1558

1559
            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be
C
chentianyu03 已提交
1560
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
1561
            
C
chentianyu03 已提交
1562
        Returns:
1563
            self
C
chentianyu03 已提交
1564 1565 1566 1567

        Examples:
            .. code-block:: python

1568
                # required: skip
C
chentianyu03 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
                import paddle

                linear=paddle.nn.Linear(2, 2)
                linear.weight
                #Parameter containing:
                #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(dtype='float64')
                linear.weight
                #Tenor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(device='cpu')
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CPUPlace, stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])
                linear.to(device=paddle.CUDAPinnedPlace(), blocking=False)
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CUDAPinnedPlace, stop_gradient=False,
                #       [[-0.04989364, -0.56889004],
                #        [ 0.33960250,  0.96878713]])
1594

1595
        '''
1596 1597 1598
        return self._to_impl(device=device,
                             dtype=dtype,
                             blocking=blocking,
1599 1600
                             include_sublayers=True,
                             floating_only=False)
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617

    def _apply(self, func, device, dtype, blocking, include_sublayers=True):
        if include_sublayers:
            for layer in self.children():
                layer._apply(func, device, dtype, blocking, include_sublayers)

        for key, param in self._parameters.items():
            if param is not None:
                with no_grad():
                    param_applied = func(param, device, dtype, blocking)

                if param.grad is not None:
                    with no_grad():
                        grad_applied = func(param._grad_ivar(), device, dtype,
                                            blocking)

        for key, buf in self._buffers.items():
1618 1619
            if buf is not None:
                self._buffers[key] = func(buf, device, dtype, blocking)
1620

1621 1622
        self._dtype = dtype

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
    def _transform(self, t, device, dtype, blocking):
        if device is None:
            device = t.place
        if dtype is None:
            dtype = t.dtype

        if type(dtype) is not VarDesc.VarType:
            dtype = convert_np_dtype_to_dtype_(dtype)

        # 1. gpu place need to determine whether the memory is sufficient for allocation:
        if t.place.is_gpu_place():
            # for gpu, minimum memory allocation unit is 256 bytes.
            size_dtype = core.size_of_dtype(dtype)
            # Note(zhangbo): Paddle GPU minimum memory allocation unit is 256 bytes, waiting_alloc_memory will comput ‘t’ occupied memory space.
            # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
            waiting_alloc_memory = (
                (np.prod(t.shape) * size_dtype) / 256 + 1) * 256 * 1.2
            gpu_memory_available = core.gpu_memory_available()
            if gpu_memory_available < waiting_alloc_memory:
                # Copy param / Tensor to cpu
                t_used = t._copy_to(paddle.CPUPlace(),
                                    blocking)  # k-v type will error
                # Release mem of t
                t.value().get_tensor()._clear()
            else:
                t_used = t
        else:
            t_used = t

        # 2. cast param / Tensor to dtype
        if dtype is not None and dtype != t_used.dtype:
            with paddle.fluid.framework._dygraph_place_guard(
                    place=t_used.place):
                t_casted = t_used.cast(dtype=dtype)
        else:
            t_casted = t_used

        # 3. Copy casted cpu param / Tensor to device
        if device is not None and not t_casted.place._equals(device):
            new_t = t_casted._copy_to(device, blocking)
        else:
            new_t = t_casted

        # 4. share Tensor to origin param / Tensor
        dst_tensor = t.value().get_tensor()
        src_tensor = new_t.value().get_tensor()
        dst_tensor._share_data_with(src_tensor)

        return t

1673 1674 1675 1676
    def _to_impl(self,
                 device=None,
                 dtype=None,
                 blocking=None,
1677 1678
                 include_sublayers=True,
                 floating_only=False):
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored.
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None.

            dtype(str|numpy.dtype|paddle.dtype|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.

            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
            
            include_sublayers(bool|True, optional): If True, deal with self and all sublayers parameters and buffers, if not only deal with self parameters and buffers. Default: True.

1694 1695
            floating_only(bool|False, optional): If True, only cast all floating point parameters and buffers of Layer by the give device, dtype and blocking.

1696 1697
        Returns:
            self
C
chentianyu03 已提交
1698 1699 1700 1701

        '''

        if device is None and dtype is None and blocking is None:
1702
            return self
C
chentianyu03 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
            elif isinstance(device, (core.CPUPlace, core.CUDAPlace,
                                     core.CUDAPinnedPlace, core.XPUPlace)):
                pass
            else:
                raise ValueError(
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace() or paddle.XPUPlace(), but the type of device is "
                    + type(device).__name__)

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
                blocking,
                bool), "blocking value error, must be the True, False or None"

        def transform(t, device, dtype, blocking):
1723 1724 1725
            if floating_only and (not paddle.is_floating_point(t)):
                return t
            return self._transform(t, device, dtype, blocking)
C
chentianyu03 已提交
1726

1727 1728
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
1729
            self._apply(transform, device, dtype, blocking, include_sublayers)
1730

1731
        self._dtype = dtype
1732
        return self
C
chentianyu03 已提交
1733

1734 1735 1736
    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict