selected_rows_functor.cu 21.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
typhoonzero 已提交
15
#include <set>
16
#include <vector>
T
typhoonzero 已提交
17

Y
Yi Wang 已提交
18
#include "paddle/fluid/operators/math/selected_rows_functor.h"
19
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
C
chengduo 已提交
20
#include "paddle/fluid/platform/float16.h"
21
#include "paddle/phi/kernels/funcs/math_function.h"
22 23 24 25 26

namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
27 28
struct SelectedRowsAdd<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
29 30
                  const phi::SelectedRows& input1,
                  const phi::SelectedRows& input2, phi::SelectedRows* output) {
31
    auto in1_height = input1.height();
32 33 34 35 36 37
    PADDLE_ENFORCE_EQ(
        in1_height, input2.height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height  = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2.height()));
38 39
    output->set_height(in1_height);

D
dzhwinter 已提交
40
    framework::Vector<int64_t> in1_rows(input1.rows());
41 42 43 44 45 46 47 48 49 50 51 52 53 54
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
55 56 57 58 59 60 61 62 63 64 65 66
    PADDLE_ENFORCE_EQ(
        in1_row_numel, in2_value.numel() / in2_rows.size(),
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, in2_value.numel() / in2_rows.size()));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, out_value->numel() / out_rows.size(),
        platform::errors::InvalidArgument(
            "The input and oupput width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, out_value->numel() / out_rows.size()));
67 68 69 70 71

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();

    auto in1_place = input1.place();
72 73 74
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the GPU place."));
75
    auto in2_place = input2.place();
76 77 78
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the GPU place."));
79
    auto out_place = context.GetPlace();
80 81 82
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(out_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the GPU place."));
83

84
    memory::Copy(out_place, out_data, in1_place, in1_data,
85
                 in1_value.numel() * sizeof(T), context.stream());
86 87

    auto* in2_data = in2_value.data<T>();
88
    memory::Copy(out_place, out_data + in1_value.numel(), in2_place, in2_data,
Q
QI JUN 已提交
89
                 in2_value.numel() * sizeof(T), context.stream());
90 91 92
  }
};

Q
QI JUN 已提交
93 94
template struct SelectedRowsAdd<platform::CUDADeviceContext, float>;
template struct SelectedRowsAdd<platform::CUDADeviceContext, double>;
95 96

namespace {
Q
QI JUN 已提交
97
template <typename T, int block_size>
98 99
__global__ void SelectedRowsAddTensorKernel(const T* selected_rows,
                                            const int64_t* rows, T* tensor_out,
Q
QI JUN 已提交
100
                                            int64_t row_numel) {
C
chengduo 已提交
101
  const int ty = blockIdx.x;
102 103 104 105 106 107 108 109 110
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;

  for (int index = tid; index < row_numel; index += block_size) {
    // Since index in rows of SelectedRows can be duplicate, we can not use
    // tensor_out[index] += selected_rows[index]; Instead, we have to use
    // AtomicAdd to avoid concurrent write error.
Q
qijun 已提交
111
    paddle::platform::CudaAtomicAdd(tensor_out + index, selected_rows[index]);
112 113 114 115 116
  }
}
}  // namespace

template <typename T>
Q
QI JUN 已提交
117 118
struct SelectedRowsAddTensor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
119
                  const phi::SelectedRows& input1,
120 121 122 123
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
124 125 126 127 128 129 130 131 132 133 134 135
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument(
            "The two inputs height must be equal."
            "But recieved first input height = [%d], first input height = [%d]",
            in1_height, in2_dims[0]));
    PADDLE_ENFORCE_EQ(
        in1_height, out_dims[0],
        platform::errors::InvalidArgument(
            "The input and output height must be equal."
            "But recieved input height = [%d], output height = [%d]",
            in1_height, out_dims[0]));
136 137

    auto& in1_value = input1.value();
138
    auto& in1_rows = input1.rows();
139 140

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
141 142 143 144 145 146 147 148 149 150 151 152
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2.numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2.numel() / in1_height));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, output->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The input and output width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, output->numel() / in1_height));
153 154 155 156 157

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = input2.data<T>();
    auto* out_data = output->data<T>();

158
    phi::funcs::SetConstant<platform::CUDADeviceContext, T> functor;
C
chengduo 已提交
159
    functor(context, output, static_cast<T>(0));
160

Q
QI JUN 已提交
161
    const int block_size = 256;
162
    dim3 threads(block_size, 1);
C
chengduo 已提交
163
    dim3 grid(in1_rows.size(), 1);
Q
QI JUN 已提交
164 165
    SelectedRowsAddTensorKernel<
        T, block_size><<<grid, threads, 0, context.stream()>>>(
Y
Yu Yang 已提交
166 167
        in1_data, in1_rows.CUDAData(context.GetPlace()), out_data,
        in1_row_numel);
168 169 170

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
171
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
172 173 174
  }
};

Q
QI JUN 已提交
175 176
template struct SelectedRowsAddTensor<platform::CUDADeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CUDADeviceContext, double>;
C
chengduo 已提交
177 178 179
template struct SelectedRowsAdd<platform::CUDADeviceContext, platform::float16>;
template struct SelectedRowsAddTensor<platform::CUDADeviceContext,
                                      platform::float16>;
Q
QI JUN 已提交
180 181

template <typename T>
Q
QI JUN 已提交
182 183
struct SelectedRowsAddTo<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
184 185
                  const phi::SelectedRows& input1, const int64_t input2_offset,
                  phi::SelectedRows* input2) {
Q
QI JUN 已提交
186
    auto in1_height = input1.height();
187 188 189 190 191 192
    PADDLE_ENFORCE_EQ(
        in1_height, input2->height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2->height()));
Q
QI JUN 已提交
193

194
    auto& in1_rows = input1.rows();
Q
QI JUN 已提交
195 196 197 198 199 200
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
Y
Fix CI  
Yu Yang 已提交
201 202 203
    if (in1_rows.size()) {
      in2_rows.Extend(in1_rows.begin(), in1_rows.end());
    }
Q
QI JUN 已提交
204 205

    auto in1_place = input1.place();
206 207 208
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the GPU place."));
Q
QI JUN 已提交
209
    auto in2_place = input2->place();
210 211 212
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the GPU place."));
Q
QI JUN 已提交
213 214 215

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
216
    memory::Copy(in2_place, in2_data + input2_offset, in1_place, in1_data,
Q
QI JUN 已提交
217
                 in1_value.numel() * sizeof(T), context.stream());
Q
QI JUN 已提交
218 219 220
  }
};

Q
QI JUN 已提交
221 222 223 224
template struct SelectedRowsAddTo<platform::CUDADeviceContext, float>;
template struct SelectedRowsAddTo<platform::CUDADeviceContext, double>;
template struct SelectedRowsAddTo<platform::CUDADeviceContext, int>;
template struct SelectedRowsAddTo<platform::CUDADeviceContext, int64_t>;
C
chengduo 已提交
225 226
template struct SelectedRowsAddTo<platform::CUDADeviceContext,
                                  platform::float16>;
Q
QI JUN 已提交
227 228 229 230 231 232 233

namespace {
template <typename T, int block_size>
__global__ void SelectedRowsAddToTensorKernel(const T* selected_rows,
                                              const int64_t* rows,
                                              T* tensor_out,
                                              int64_t row_numel) {
C
chengduo 已提交
234
  const int ty = blockIdx.x;
Q
QI JUN 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;

  for (int index = tid; index < row_numel; index += block_size) {
    // Since index in rows of SelectedRows can be duplicate, we have to use
    // Atomic Operation to avoid concurrent write error.
    paddle::platform::CudaAtomicAdd(tensor_out + index, selected_rows[index]);
  }
}
}  // namespace

template <typename T>
Q
QI JUN 已提交
249 250
struct SelectedRowsAddToTensor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
251
                  const phi::SelectedRows& input1, framework::Tensor* input2) {
Q
QI JUN 已提交
252 253
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
254 255 256 257 258 259
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
Q
QI JUN 已提交
260 261

    auto& in1_value = input1.value();
262
    auto& in1_rows = input1.rows();
Q
QI JUN 已提交
263 264

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
265 266 267 268 269 270
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
Q
QI JUN 已提交
271 272 273 274 275

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = input2->data<T>();
    const int block_size = 256;
    dim3 threads(block_size, 1);
C
chengduo 已提交
276
    dim3 grid(in1_rows.size(), 1);
Q
QI JUN 已提交
277 278
    SelectedRowsAddToTensorKernel<
        T, block_size><<<grid, threads, 0, context.stream()>>>(
Y
Yu Yang 已提交
279 280
        in1_data, in1_rows.CUDAData(context.GetPlace()), in2_data,
        in1_row_numel);
Q
QI JUN 已提交
281 282 283
  }
};

Q
QI JUN 已提交
284 285 286 287
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, int64_t>;
C
chengduo 已提交
288 289
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext,
                                        platform::float16>;
T
typhoonzero 已提交
290 291 292 293 294 295 296

namespace scatter {

template <typename T, int block_size>
__global__ void MergeAddKernel(const T* input, const int64_t* input_rows,
                               T* out, const int64_t* out_rows,
                               size_t out_rows_size, int64_t row_numel) {
S
sneaxiy 已提交
297
  const int ty = blockIdx.x;
T
typhoonzero 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
  int tid = threadIdx.x;
  __shared__ size_t out_idx;

  if (tid == 0) {
    for (size_t i = 0; i < out_rows_size; i++) {
      if (input_rows[ty] == out_rows[i]) {
        out_idx = i;
      }
    }
  }

  __syncthreads();

  input += ty * row_numel;
  out += out_idx * row_numel;
  for (int index = tid; index < row_numel; index += block_size) {
    paddle::platform::CudaAtomicAdd(out + index, input[index]);
  }
}

template <typename T>
T
typhoonzero 已提交
319
struct MergeAdd<platform::CUDADeviceContext, T> {
320 321 322 323
  phi::SelectedRows operator()(const platform::CUDADeviceContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result = false) {
    phi::SelectedRows out;
S
sneaxiy 已提交
324 325 326 327 328
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CUDADeviceContext& context,
329
                  const phi::SelectedRows& input, phi::SelectedRows* output,
M
minqiyang 已提交
330
                  const bool sorted_result = false) {
D
dzhwinter 已提交
331
    framework::Vector<int64_t> input_rows(input.rows());
Q
Qiao Longfei 已提交
332 333 334 335
    if (input_rows.size() == 0) {
      return;
    }

336
    phi::SelectedRows& out = *output;
T
typhoonzero 已提交
337
    std::set<int64_t> row_set(input_rows.begin(), input_rows.end());
Q
Qiao Longfei 已提交
338 339
    std::vector<int64_t> merge_rows_cpu(row_set.begin(), row_set.end());
    framework::Vector<int64_t> merge_rows(merge_rows_cpu);
T
typhoonzero 已提交
340 341

    auto input_width = input.value().dims()[1];
T
wip  
typhoonzero 已提交
342 343 344 345

    out.set_rows(merge_rows);
    out.set_height(input.height());
    out.mutable_value()->mutable_data<T>(
346
        phi::make_ddim({static_cast<int64_t>(merge_rows.size()), input_width}),
T
typhoonzero 已提交
347 348
        context.GetPlace());

349
    phi::funcs::SetConstant<platform::CUDADeviceContext, T> constant_functor;
C
chengduo 已提交
350
    constant_functor(context, out.mutable_value(), static_cast<T>(0));
T
typhoonzero 已提交
351

T
wip  
typhoonzero 已提交
352
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
353 354 355 356
    auto* input_data = input.value().data<T>();

    const int block_size = 256;
    dim3 threads(block_size, 1);
S
sneaxiy 已提交
357
    dim3 grid1(input_rows.size(), 1);
T
typhoonzero 已提交
358

S
sneaxiy 已提交
359
    MergeAddKernel<T, 256><<<grid1, threads, 0, context.stream()>>>(
Y
Yu Yang 已提交
360 361 362
        input_data, input_rows.CUDAData(context.GetPlace()), out_data,
        out.mutable_rows()->CUDAMutableData(context.GetPlace()),
        out.rows().size(), input_width);
T
typhoonzero 已提交
363
  }
364 365

  void operator()(const platform::CUDADeviceContext& context,
366 367
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result = false) {
368
    if (inputs.size() == 0) {
M
minqiyang 已提交
369
      VLOG(3) << "no input! return";
370 371
      return;
    }
372
    const phi::SelectedRows* has_value_input = nullptr;
373
    for (auto* in : inputs) {
Q
Qiao Longfei 已提交
374
      if (in->rows().size() > 0) {
375 376 377 378 379
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
M
minqiyang 已提交
380
      VLOG(3) << "no input has value! just return" << std::endl;
381 382 383 384
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
385
    phi::SelectedRows& out = *output;
386 387
    std::set<int64_t> merged_row_set;
    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
388
      if (input->rows().size() == 0) {
389 390
        continue;
      }
391
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
392 393 394
                        platform::errors::InvalidArgument(
                            "All input should have same "
                            "dimension except for the first one."));
395
      PADDLE_ENFORCE_EQ(input_height, input->height(),
396 397
                        platform::errors::InvalidArgument(
                            "All input should have same height."));
398 399
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
Q
Qiao Longfei 已提交
400
    std::vector<int64_t> merge_rows_cpu(merged_row_set.begin(),
Q
format  
Qiao Longfei 已提交
401
                                        merged_row_set.end());
Q
Qiao Longfei 已提交
402
    framework::Vector<int64_t> merge_rows(merge_rows_cpu);
403 404 405 406

    out.set_rows(merge_rows);
    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
407
        phi::make_ddim({static_cast<int64_t>(merge_rows.size()), input_width}),
408 409
        context.GetPlace());

410
    phi::funcs::SetConstant<platform::CUDADeviceContext, T> constant_functor;
C
chengduo 已提交
411
    constant_functor(context, out.mutable_value(), static_cast<T>(0));
412 413 414 415 416 417 418

    auto* out_data = out.mutable_value()->data<T>();

    const int block_size = 256;
    dim3 threads(block_size, 1);

    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
419
      if (input->rows().size() == 0) {
Q
Qiao Longfei 已提交
420 421
        continue;
      }
422 423
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();
424 425 426 427 428 429 430 431
      dim3 grid1(input_rows.size(), 1);

      MergeAddKernel<T, 256><<<grid1, threads, 0, context.stream()>>>(
          input_data, input_rows.CUDAData(context.GetPlace()), out_data,
          out.mutable_rows()->CUDAMutableData(context.GetPlace()),
          out.rows().size(), input_width);
    }
  }
T
typhoonzero 已提交
432 433
};

T
typhoonzero 已提交
434 435 436 437
template struct MergeAdd<platform::CUDADeviceContext, float>;
template struct MergeAdd<platform::CUDADeviceContext, double>;
template struct MergeAdd<platform::CUDADeviceContext, int>;
template struct MergeAdd<platform::CUDADeviceContext, int64_t>;
C
chengduo 已提交
438
template struct MergeAdd<platform::CUDADeviceContext, platform::float16>;
439 440 441
template struct MergeAdd<platform::CUDADeviceContext, platform::complex<float>>;
template struct MergeAdd<platform::CUDADeviceContext,
                         platform::complex<double>>;
T
wip  
typhoonzero 已提交
442 443 444 445 446

template <typename T, int block_size>
__global__ void UpdateToTensorKernel(const T* selected_rows,
                                     const int64_t* rows, const ScatterOps& op,
                                     T* tensor_out, int64_t row_numel) {
C
chengduo 已提交
447
  const int ty = blockIdx.x;
T
wip  
typhoonzero 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;
  // FIXME(typhoonzero): use macro fix the below messy code.
  switch (op) {
    case ScatterOps::ASSIGN:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] = selected_rows[index];
      }
      break;
    case ScatterOps::ADD:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] += selected_rows[index];
      }
      break;
    case ScatterOps::SUB:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] -= selected_rows[index];
      }
      break;
    case ScatterOps::SUBBY:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] = selected_rows[index] - tensor_out[index];
      }
      break;
    case ScatterOps::MUL:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] *= selected_rows[index];
      }
      break;
    case ScatterOps::DIV:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] /= selected_rows[index];
      }
      break;
    case ScatterOps::DIVBY:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] = selected_rows[index] / tensor_out[index];
      }
      break;
  }
}

template <typename T>
T
typhoonzero 已提交
493 494
struct UpdateToTensor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
495
                  const ScatterOps& op, const phi::SelectedRows& input1,
T
typhoonzero 已提交
496
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
497 498
    // NOTE: Use SelectedRowsAddToTensor for better performance
    //       no additional MergeAdd called.
T
typhoonzero 已提交
499 500
    MergeAdd<platform::CUDADeviceContext, T> merge_func;
    auto merged_in1 = merge_func(context, input1);
T
wip  
typhoonzero 已提交
501 502 503

    auto in1_height = merged_in1.height();
    auto in2_dims = input2->dims();
504 505 506 507 508 509
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
T
wip  
typhoonzero 已提交
510 511 512 513 514

    auto& in1_value = merged_in1.value();
    auto& in1_rows = merged_in1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
515 516 517 518 519 520
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
T
wip  
typhoonzero 已提交
521

T
typhoonzero 已提交
522 523
    auto* in1_data = in1_value.template data<T>();
    auto* in2_data = input2->data<T>();
T
wip  
typhoonzero 已提交
524

T
typhoonzero 已提交
525
    dim3 threads(platform::PADDLE_CUDA_NUM_THREADS, 1);
C
chengduo 已提交
526
    dim3 grid(in1_rows.size(), 1);
T
typhoonzero 已提交
527
    UpdateToTensorKernel<T, platform::PADDLE_CUDA_NUM_THREADS><<<
D
dzhwinter 已提交
528 529
        grid, threads, 0, context.stream()>>>(in1_data, in1_rows.cuda_data(),
                                              op, in2_data, in1_row_numel);
T
wip  
typhoonzero 已提交
530 531
  }
};
T
typhoonzero 已提交
532
}  // namespace scatter
533 534 535
}  // namespace math
}  // namespace operators
}  // namespace paddle