rnn.html 24.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>RNNOp design &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../genindex.html"/>
        <link rel="search" title="Search" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a></li>
87
<li class="toctree-l1"><a class="reference internal" href="../../mobile/index_en.html">MOBILE</a></li>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
124
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_en.html">PaddlePaddle Distributed Training</a></li>
125 126 127 128
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/build_en.html">Build PaddlePaddle from Source Code and Run Unit Test</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/new_layer_en.html">Write New Layers</a></li>
129
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
152 153 154 155 156
<li class="toctree-l1"><a class="reference internal" href="../../mobile/index_en.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_android_en.html">Build PaddlePaddle for Android</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_raspberry_en.html">Build PaddlePaddle for Raspberry Pi</a></li>
</ul>
</li>
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>RNNOp design</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="rnnop-design">
<span id="rnnop-design"></span><h1>RNNOp design<a class="headerlink" href="#rnnop-design" title="Permalink to this headline"></a></h1>
<p>This document is about an RNN operator which requires that instances in a mini-batch have the same length.  We will have a more flexible RNN operator.</p>
<div class="section" id="rnn-algorithm-implementation">
<span id="rnn-algorithm-implementation"></span><h2>RNN Algorithm Implementation<a class="headerlink" href="#rnn-algorithm-implementation" title="Permalink to this headline"></a></h2>
<p aligh="center">
<img src="./images/rnn.jpg"/>
</p><p>The above diagram shows an RNN unrolled into a full network.</p>
<p>There are several important concepts:</p>
<ul class="simple">
<li><em>step-net</em>: the sub-graph to run at each step,</li>
<li><em>memory</em>, $h_t$, the state of the current step,</li>
<li><em>ex-memory</em>, $h_{t-1}$, the state of the previous step,</li>
<li><em>initial memory value</em>, the ex-memory of the first step.</li>
</ul>
<div class="section" id="step-scope">
<span id="step-scope"></span><h3>Step-scope<a class="headerlink" href="#step-scope" title="Permalink to this headline"></a></h3>
<p>There could be local variables defined in step-nets.  PaddlePaddle runtime realizes these variables in <em>step-scopes</em> &#8211; scopes created for each step.</p>
<p aligh="center">
<img src="./images/rnn.png"/><br/>
Figure 2 the RNN's data flow
</p><p>Please be aware that all steps run the same step-net.  Each step</p>
<ol class="simple">
<li>creates the step-scope,</li>
<li>realizes local variables, including step-outputs, in the step-scope, and</li>
<li>runs the step-net, which could use these variables.</li>
</ol>
<p>The RNN operator will compose its output from step outputs in step scopes.</p>
</div>
<div class="section" id="memory-and-ex-memory">
<span id="memory-and-ex-memory"></span><h3>Memory and Ex-memory<a class="headerlink" href="#memory-and-ex-memory" title="Permalink to this headline"></a></h3>
<p>Let&#8217;s give more details about memory and ex-memory via a simply example:</p>
<p>$$
h_t = U h_{t-1} + W x_t
$$,</p>
<p>where $h_t$ and $h_{t-1}$ are the memory and ex-memory of step $t$&#8217;s respectively.</p>
<p>In the implementation, we can make an ex-memory variable either &#8220;refers to&#8221; the memory variable of the previous step,
or copy the value of the previous memory value to the current ex-memory variable.</p>
</div>
<div class="section" id="usage-in-python">
<span id="usage-in-python"></span><h3>Usage in Python<a class="headerlink" href="#usage-in-python" title="Permalink to this headline"></a></h3>
<p>For more information on Block, please refer to the <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md">design doc</a>.</p>
<p>We can define an RNN&#8217;s step-net using Block:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">paddle</span> <span class="kn">as</span> <span class="nn">pd</span>

<span class="n">X</span> <span class="o">=</span> <span class="n">some_op</span><span class="p">()</span> <span class="c1"># x is some operator&#39;s output, and is a LoDTensor</span>
<span class="n">a</span> <span class="o">=</span> <span class="n">some_op</span><span class="p">()</span>

<span class="c1"># declare parameters</span>
<span class="n">W</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">20</span><span class="p">,</span> <span class="mi">30</span><span class="p">])</span>
<span class="n">U</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">20</span><span class="p">,</span> <span class="mi">30</span><span class="p">])</span>

<span class="n">rnn</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">create_rnn_op</span><span class="p">(</span><span class="n">output_num</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="k">with</span> <span class="n">rnn</span><span class="o">.</span><span class="n">stepnet</span><span class="p">():</span>
    <span class="n">x</span> <span class="o">=</span> <span class="n">rnn</span><span class="o">.</span><span class="n">add_input</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
    <span class="c1"># declare a memory (rnn&#39;s step)</span>
    <span class="n">h</span> <span class="o">=</span> <span class="n">rnn</span><span class="o">.</span><span class="n">add_memory</span><span class="p">(</span><span class="n">init</span><span class="o">=</span><span class="n">a</span><span class="p">)</span>
    <span class="c1"># h.pre_state() means previous memory of rnn</span>
    <span class="n">new_state</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">add_two</span><span class="p">(</span> <span class="n">pd</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">W</span><span class="p">,</span> <span class="n">x</span><span class="p">)</span> <span class="o">+</span> <span class="n">pd</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">U</span><span class="p">,</span> <span class="n">h</span><span class="o">.</span><span class="n">pre_state</span><span class="p">()))</span>
    <span class="c1"># update current memory</span>
    <span class="n">h</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">new_state</span><span class="p">)</span>
    <span class="c1"># indicate that h variables in all step scopes should be merged</span>
    <span class="n">rnn</span><span class="o">.</span><span class="n">add_outputs</span><span class="p">(</span><span class="n">h</span><span class="p">)</span>

<span class="n">out</span> <span class="o">=</span> <span class="n">rnn</span><span class="p">()</span>
</pre></div>
</div>
<p>Python API functions in above example:</p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">rnn.add_input</span></code> indicates the parameter is a variable that will be segmented into step-inputs.</li>
<li><code class="docutils literal"><span class="pre">rnn.add_memory</span></code> creates a variable used as the memory.</li>
<li><code class="docutils literal"><span class="pre">rnn.add_outputs</span></code> mark the variables that will be concatenated across steps into the RNN output.</li>
</ul>
</div>
<div class="section" id="nested-rnn-and-lodtensor">
<span id="nested-rnn-and-lodtensor"></span><h3>Nested RNN and LoDTensor<a class="headerlink" href="#nested-rnn-and-lodtensor" title="Permalink to this headline"></a></h3>
<p>An RNN whose step-net includes other RNN operators is known as an <em>nested RNN</em>.</p>
<p>For example, we could have a 2-level RNN, where the top level corresponds to paragraphs, and the lower level corresponds to sentences.</p>
<p>The following figure illustrates the feeding of text into the lower level, one sentence each step, and the feeding of step outputs to the top level. The final top level output is about the whole text.</p>
<p aligh="center">
<img src="./images/2_level_rnn.png"/>
</p><div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">paddle</span> <span class="kn">as</span> <span class="nn">pd</span>

<span class="n">W</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">20</span><span class="p">,</span> <span class="mi">30</span><span class="p">])</span>
<span class="n">U</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">20</span><span class="p">,</span> <span class="mi">30</span><span class="p">])</span>

<span class="n">W0</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">20</span><span class="p">,</span> <span class="mi">30</span><span class="p">])</span>
<span class="n">U0</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">20</span><span class="p">,</span> <span class="mi">30</span><span class="p">])</span>

<span class="c1"># a is output of some op</span>
<span class="n">a</span> <span class="o">=</span> <span class="n">some_op</span><span class="p">()</span>

<span class="c1"># chapter_data is a set of 128-dim word vectors</span>
<span class="c1"># the first level of LoD is sentence</span>
<span class="c1"># the second level of LoD is chapter</span>
<span class="n">chapter_data</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="bp">None</span><span class="p">,</span> <span class="mi">128</span><span class="p">],</span> <span class="nb">type</span><span class="o">=</span><span class="n">pd</span><span class="o">.</span><span class="n">lod_tensor</span><span class="p">,</span> <span class="n">level</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>

<span class="k">def</span> <span class="nf">lower_level_rnn</span><span class="p">(</span><span class="n">paragraph</span><span class="p">):</span>
    <span class="sd">&#39;&#39;&#39;</span>
<span class="sd">    x: the input</span>
<span class="sd">    &#39;&#39;&#39;</span>
    <span class="n">rnn</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">create_rnn_op</span><span class="p">(</span><span class="n">output_num</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="k">with</span> <span class="n">rnn</span><span class="o">.</span><span class="n">stepnet</span><span class="p">():</span>
        <span class="n">sentence</span> <span class="o">=</span> <span class="n">rnn</span><span class="o">.</span><span class="n">add_input</span><span class="p">(</span><span class="n">paragraph</span><span class="p">,</span> <span class="n">level</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
        <span class="n">h</span> <span class="o">=</span> <span class="n">rnn</span><span class="o">.</span><span class="n">add_memory</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">20</span><span class="p">,</span> <span class="mi">30</span><span class="p">])</span>
        <span class="n">h</span><span class="o">.</span><span class="n">update</span><span class="p">(</span>
            <span class="n">pd</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">W</span><span class="p">,</span> <span class="n">sentence</span><span class="p">)</span> <span class="o">+</span> <span class="n">pd</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">U</span><span class="p">,</span> <span class="n">h</span><span class="o">.</span><span class="n">pre_state</span><span class="p">()))</span>
        <span class="c1"># get the last state as sentence&#39;s info</span>
        <span class="n">rnn</span><span class="o">.</span><span class="n">add_outputs</span><span class="p">(</span><span class="n">h</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">rnn</span>

<span class="n">top_level_rnn</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">create_rnn_op</span><span class="p">(</span><span class="n">output_num</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="k">with</span> <span class="n">top_level_rnn</span><span class="o">.</span><span class="n">stepnet</span><span class="p">():</span>
    <span class="n">paragraph_data</span> <span class="o">=</span> <span class="n">rnn</span><span class="o">.</span><span class="n">add_input</span><span class="p">(</span><span class="n">chapter_data</span><span class="p">,</span> <span class="n">level</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="n">low_rnn</span> <span class="o">=</span> <span class="n">lower_level_rnn</span><span class="p">(</span><span class="n">paragraph_data</span><span class="p">)</span>
    <span class="n">paragraph_out</span> <span class="o">=</span> <span class="n">low_rnn</span><span class="p">()</span>

    <span class="n">h</span> <span class="o">=</span> <span class="n">rnn</span><span class="o">.</span><span class="n">add_memory</span><span class="p">(</span><span class="n">init</span><span class="o">=</span><span class="n">a</span><span class="p">)</span>
    <span class="n">h</span><span class="o">.</span><span class="n">update</span><span class="p">(</span>
        <span class="n">pd</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">W0</span><span class="p">,</span> <span class="n">paragraph_data</span><span class="p">)</span> <span class="o">+</span> <span class="n">pd</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">U0</span><span class="p">,</span> <span class="n">h</span><span class="o">.</span><span class="n">pre_state</span><span class="p">()))</span>
    <span class="n">top_level_rnn</span><span class="o">.</span><span class="n">add_outputs</span><span class="p">(</span><span class="n">h</span><span class="p">)</span>

<span class="c1"># just output the last step</span>
<span class="n">chapter_out</span> <span class="o">=</span> <span class="n">top_level_rnn</span><span class="p">(</span><span class="n">output_all_steps</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
</pre></div>
</div>
<p>in above example, the construction of the <code class="docutils literal"><span class="pre">top_level_rnn</span></code> calls  <code class="docutils literal"><span class="pre">lower_level_rnn</span></code>.  The input is a LoD Tensor. The top level RNN segments input text data into paragraphs, and the lower level RNN segments each paragraph into sentences.</p>
<p>By default, the <code class="docutils literal"><span class="pre">RNNOp</span></code> will concatenate the outputs from all the time steps,
if the <code class="docutils literal"><span class="pre">output_all_steps</span></code> set to False, it will only output the final time step.</p>
<p align="center">
<img src="images/rnn_2level_data.png"/>
</p></div>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>