MKLDNNFcLayer.cpp 9.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "MKLDNNFcLayer.h"
T
tensor-tang 已提交
16
#include "paddle/utils/Logging.h"
T
tensor-tang 已提交
17
#include "paddle/utils/Stat.h"
T
tensor-tang 已提交
18

T
tensor-tang 已提交
19 20 21 22 23 24
using namespace mkldnn;  // NOLINT
typedef memory::format format;
typedef inner_product_forward fc_fwd;
typedef inner_product_backward_weights fc_bwdWgt;
typedef inner_product_backward_data fc_bwdData;

T
tensor-tang 已提交
25 26
namespace paddle {

27
REGISTER_LAYER(mkldnn_fc, MKLDNNFcLayer);
T
tensor-tang 已提交
28

29
bool MKLDNNFcLayer::init(const LayerMap& layerMap,
T
tensor-tang 已提交
30
                         const ParameterMap& parameterMap) {
31
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
T
tensor-tang 已提交
32 33 34
    return false;
  }

T
tensor-tang 已提交
35
  CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet";
T
tensor-tang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  CHECK_EQ(inputLayers_.size(), parameters_.size());
  CHECK(!parameters_[0]->isSparse()) << "Do not support sparse yet";

  // output size, cat not be changed
  oc_ = getSize();
  oh_ = 1;
  ow_ = 1;

  // input size can not change in FC
  iLayerSize_ = inputLayers_[0]->getSize();
  CHECK_EQ(parameters_[0]->getSize(), iLayerSize_ * oc_);

  // create weight
  weight_ =
      std::unique_ptr<Weight>(new Weight(oc_, iLayerSize_, parameters_[0], 0));

  // create biases
  if (biasParameter_.get() != NULL) {
    biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_));
  }
  return true;
}

59
void MKLDNNFcLayer::convertWeightsFromPaddle() {
T
tensor-tang 已提交
60
  if (hasInitedWgt_) {
T
tensor-tang 已提交
61 62 63
    return;
  }

T
tensor-tang 已提交
64 65 66 67 68
  CHECK(wgtVal_) << "should have been initialized";
  bool hasNoSpatial_ = ih_ == 1 && iw_ == 1;
  auto targetDim = wgtVal_->getDims();
  auto srcFmt = hasNoSpatial_ ? memory::format::io : memory::format::ihwo;
  wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
T
tensor-tang 已提交
69 70 71
  hasInitedWgt_ = true;
}

72
void MKLDNNFcLayer::convertWeightsToPaddle() {
T
tensor-tang 已提交
73 74 75 76 77
  CHECK(wgtVal_) << "should have been initialized";
  bool hasNoSpatial_ = ih_ == 1 && iw_ == 1;
  auto targetDim = wgtVal_->getDims();
  auto dstFmt = hasNoSpatial_ ? memory::format::io : memory::format::ihwo;
  wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
T
tensor-tang 已提交
78 79
}

80
void MKLDNNFcLayer::reshape() {
81
  const Argument& input = getInput(0, getPrev(0)->getDeviceId());
T
tensor-tang 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
  int batchSize = input.getBatchSize();
  if (bs_ == batchSize) {
    return;
  }
  bs_ = batchSize;
  ih_ = input.getFrameHeight();
  iw_ = input.getFrameWidth();
  if (ih_ == 0) {
    ih_ = 1;
  }
  if (iw_ == 0) {
    iw_ = 1;
  }
  CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize());
  ic_ = iLayerSize_ / (ih_ * iw_);
  CHECK_EQ(size_t(ic_ * ih_ * iw_), iLayerSize_) << "not divisible";
  CHECK_EQ(size_t(oc_), getSize());
T
tensor-tang 已提交
99
  printSizeInfo();
T
tensor-tang 已提交
100 101 102 103 104

  // reset output
  output_.setFrameHeight(oh_);
  output_.setFrameWidth(ow_);
  resetOutput(bs_, oc_);
T
tensor-tang 已提交
105 106 107 108 109 110 111 112

  // reset mkldnn forward
  resetFwd();
  needResetBwd_ = true;

  convertWeightsFromPaddle();
}

113
void MKLDNNFcLayer::resetFwd() {
T
tensor-tang 已提交
114
  bool hasBias = biases_ && biases_->getW();
T
tensor-tang 已提交
115 116 117 118
  const MatrixPtr& wgt = weight_->getW();
  const MatrixPtr& bias = hasBias ? biases_->getW() : nullptr;
  const MatrixPtr& out = output_.value;

T
rename  
tensor-tang 已提交
119
  if (inputIsOnlyMKLDNN()) {
120
    const MatrixPtr& in = getInputValue(0);
T
tensor-tang 已提交
121 122 123
    inVal_ = std::dynamic_pointer_cast<MKLDNNMatrix>(in);
    CHECK(inVal_) << "Input should be MKLDNNMatrix";
  } else {
124 125
    CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet";
    const MatrixPtr& in = getInputValue(0, CPU_DEVICE);
T
tensor-tang 已提交
126
    inVal_ = MKLDNNMatrix::create(
127
        in, memory::dims{bs_, ic_, ih_, iw_}, format::nchw, engine_);
T
tensor-tang 已提交
128
  }
129
  inVal_->downSpatial();
T
tensor-tang 已提交
130
  wgtVal_ = MKLDNNMatrix::create(
131 132
      wgt, memory::dims{oc_, ic_, ih_, iw_}, format::oihw, engine_);
  wgtVal_->downSpatial();
T
tensor-tang 已提交
133 134 135 136
  biasVal_ =
      hasBias ? MKLDNNMatrix::create(bias, {oc_}, format::x, engine_) : nullptr;
  outVal_ = MKLDNNMatrix::create(out, {bs_, oc_}, format::nc, engine_);

137
  // change original output value to mkldnn output value
T
tensor-tang 已提交
138
  output_.value = std::dynamic_pointer_cast<Matrix>(outVal_);
T
rename  
tensor-tang 已提交
139
  if (!outputIsOnlyMKLDNN()) {
T
tensor-tang 已提交
140 141 142 143
    copyOutputInfoToOtherDevice();
    // fc cpu output value do not need create convert
    // just share point
    getOutput(CPU_DEVICE).value->setData(output_.value->getData());
144
  }
T
tensor-tang 已提交
145

T
tensor-tang 已提交
146
  // create forward handle
T
tensor-tang 已提交
147
  prop_kind pk = prop_kind::forward;
T
refine  
tensor-tang 已提交
148 149 150 151 152 153 154 155 156
  fc_fwd::desc fwdDesc = hasBias ? fc_fwd::desc(pk,
                                                inVal_->getMemoryDesc(),
                                                wgtVal_->getMemoryDesc(),
                                                biasVal_->getMemoryDesc(),
                                                outVal_->getMemoryDesc())
                                 : fc_fwd::desc(pk,
                                                inVal_->getMemoryDesc(),
                                                wgtVal_->getMemoryDesc(),
                                                outVal_->getMemoryDesc());
T
tensor-tang 已提交
157
  fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
T
tensor-tang 已提交
158
  if (hasBias) {
T
tensor-tang 已提交
159 160 161 162
    fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *biasVal_, *outVal_));
  } else {
    fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *outVal_));
  }
163 164
  printValueFormatFlow();

T
tensor-tang 已提交
165 166 167 168
  pipelineFwd_.clear();
  pipelineFwd_.push_back(*fwd_);
}

169
void MKLDNNFcLayer::resetBwd() {
T
tensor-tang 已提交
170 171 172 173 174 175 176
  if (!needResetBwd_) {
    return;
  }
  needResetBwd_ = false;
  bool hasBias = biases_ && biases_->getWGrad();

  /// backward weight
T
tensor-tang 已提交
177 178 179 180
  CHECK(inVal_) << "Should have input value";
  const MatrixPtr& wgt = weight_->getWGrad();
  const MatrixPtr& bias = hasBias ? biases_->getWGrad() : nullptr;

T
refine  
tensor-tang 已提交
181
  // TODO(TJ): merge outgrad
T
rename  
tensor-tang 已提交
182 183 184 185 186 187 188 189 190 191
  int device = outputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE;
  // for MKLDNN device:
  // can not directly cast outputgrad to mkldnnmatrix,
  // since each layer can not write the inputgrad to mkldnn inputgrad.
  // So just create from matrix with outputvalue format.
  // for CPU device:
  // fc do not need to convert from cpu device since output is always nc format
  // only need create from cpu device
  const MatrixPtr& out = getOutput(device).grad;
  outGrad_ = MKLDNNMatrix::create(out, outVal_->getPrimitiveDesc());
T
refine  
tensor-tang 已提交
192 193 194
  wgtGrad_ = MKLDNNMatrix::create(wgt, wgtVal_->getPrimitiveDesc());
  biasGrad_ = hasBias ? MKLDNNMatrix::create(bias, biasVal_->getPrimitiveDesc())
                      : nullptr;
T
tensor-tang 已提交
195 196 197

  // create memory primitive desc
  fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward,
T
refine  
tensor-tang 已提交
198 199 200
                                      inVal_->getMemoryDesc(),
                                      wgtGrad_->getMemoryDesc(),
                                      outGrad_->getMemoryDesc());
T
tensor-tang 已提交
201
  fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
T
refine  
tensor-tang 已提交
202 203 204 205 206 207 208 209
  fc_bwdWgt::desc bwdWgtDesc = hasBias
                                   ? fc_bwdWgt::desc(inVal_->getMemoryDesc(),
                                                     wgtGrad_->getMemoryDesc(),
                                                     biasGrad_->getMemoryDesc(),
                                                     outGrad_->getMemoryDesc())
                                   : fc_bwdWgt::desc(inVal_->getMemoryDesc(),
                                                     wgtGrad_->getMemoryDesc(),
                                                     outGrad_->getMemoryDesc());
T
tensor-tang 已提交
210 211 212
  fc_bwdWgt::primitive_desc bwdWgtPD =
      fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD);

T
tensor-tang 已提交
213
  if (hasBias) {
T
tensor-tang 已提交
214 215 216 217 218 219 220 221 222
    bwdWgt_.reset(
        new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_, *biasGrad_));
  } else {
    bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_));
  }
  pipelineBwd_.clear();
  pipelineBwd_.push_back(*bwdWgt_);

  /// backward data
T
rename  
tensor-tang 已提交
223
  device = inputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE;
T
refine  
tensor-tang 已提交
224 225 226 227 228 229
  const MatrixPtr& in = getInputGrad(0, device);
  if (in == nullptr) {
    return;
  }
  if (getInput(0, device).getAllCount() > 1) {
    // TODO(TJ): use outputMaps_ ways when merge outgrad done
230
  } else {
T
refine  
tensor-tang 已提交
231
    inGrad_ = MKLDNNMatrix::create(in, inVal_->getPrimitiveDesc());
T
tensor-tang 已提交
232
  }
233

T
refine  
tensor-tang 已提交
234 235 236
  fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(inVal_->getMemoryDesc(),
                                                  wgtGrad_->getMemoryDesc(),
                                                  outGrad_->getMemoryDesc());
T
tensor-tang 已提交
237 238
  fc_bwdData::primitive_desc bwdDataPD =
      fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD);
T
tensor-tang 已提交
239

T
tensor-tang 已提交
240 241
  CHECK(wgtVal_) << "Should have weight memory";
  bwdData_.reset(new fc_bwdData(bwdDataPD, *outGrad_, *wgtVal_, *inGrad_));
242
  printGradFormatFlow();
T
tensor-tang 已提交
243
  pipelineBwd_.push_back(*bwdData_);
T
tensor-tang 已提交
244 245
}

246
void MKLDNNFcLayer::forward(PassType passType) {
T
tensor-tang 已提交
247 248
  Layer::forward(passType);
  reshape();
T
tensor-tang 已提交
249

T
tensor-tang 已提交
250 251
  {
    REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
252
    syncInputValue();
T
tensor-tang 已提交
253 254 255

    // just submit forward pipeline
    stream_->submit(pipelineFwd_);
T
tensor-tang 已提交
256
  }
T
tensor-tang 已提交
257

T
tensor-tang 已提交
258 259 260 261 262 263
  /* activation */ {
    REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
    forwardActivation();
  }
}

264
void MKLDNNFcLayer::backward(const UpdateCallback& callback) {
T
tensor-tang 已提交
265 266 267 268 269 270 271
  /* Do derivation */ {
    REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
    backwardActivation();
  }

  {
    REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
T
tensor-tang 已提交
272 273
    resetBwd();

274
    syncOutputGrad();
T
tensor-tang 已提交
275 276
    // just sumbmit backward pipeline
    stream_->submit(pipelineBwd_);
T
tensor-tang 已提交
277 278 279 280 281
  }

  {
    REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
    weight_->getParameterPtr()->incUpdate(callback);
T
tensor-tang 已提交
282
    if (biases_ && biases_->getWGrad()) {
T
tensor-tang 已提交
283 284 285
      biases_->getParameterPtr()->incUpdate(callback);
    }
  }
T
tensor-tang 已提交
286
}
T
tensor-tang 已提交
287
}  // namespace paddle