conv2d_op.h 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

B
baojun 已提交
17
#include <memory>
18
#include <string>
B
baojun 已提交
19
#include <unordered_map>
20 21
#include <vector>
#include "ngraph/ngraph.hpp"
22
#include "paddle/fluid/operators/ngraph/ops/op_bridge.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
#include "paddle/fluid/platform/ngraph_helper.h"

namespace paddle {
namespace operators {
namespace ngraphs {

std::shared_ptr<ngraph::Node> GroupedConvolution(
    const std::shared_ptr<ngraph::Node>& data_batch,
    const std::shared_ptr<ngraph::Node>& filters, const ngraph::Strides strides,
    const ngraph::Strides dilations, const ngraph::CoordinateDiff& paddings,
    size_t groups) {
  auto& data_shape = data_batch->get_shape();
  auto& filter_shape = filters->get_shape();
  ngraph::NodeVector ng_slices;

  for (size_t i = 0; i < groups; ++i) {
    size_t channel_step = filter_shape.at(1);
    const std::vector<size_t> lower_bound{0, i * channel_step, 0, 0};
    const std::vector<size_t> upper_bound{data_shape.at(0),
                                          (i + 1) * channel_step,
                                          data_shape.at(2), data_shape.at(3)};
    auto data_slice = std::make_shared<ngraph::op::Slice>(
        data_batch, lower_bound, upper_bound);

    size_t filter_step = filter_shape.at(0) / groups;
    const std::vector<size_t> filter_lower_bound{i * filter_step, 0, 0, 0};
    const std::vector<size_t> filter_upper_bound{
        (i + 1) * filter_step, filter_shape.at(1), filter_shape.at(2),
        filter_shape.at(3)};
    auto filter_slice = std::make_shared<ngraph::op::Slice>(
        filters, filter_lower_bound, filter_upper_bound);
    auto ng_conv = std::make_shared<ngraph::op::Convolution>(
        data_slice, filter_slice, strides, dilations, paddings, paddings);
    ng_slices.push_back(ng_conv);
  }

  size_t concat_axis = 1;
  return std::make_shared<ngraph::op::Concat>(ng_slices, concat_axis);
}

std::shared_ptr<ngraph::Node> GroupedGradConvolutionFilter(
    const std::shared_ptr<ngraph::Node>& data_batch,
    const std::shared_ptr<ngraph::Node>& filters,
    const std::shared_ptr<ngraph::Node>& doutput, const ngraph::Strides strides,
    const ngraph::Strides dilations, const ngraph::CoordinateDiff& paddings,
    size_t groups) {
  auto& data_shape = data_batch->get_shape();
  auto& filter_shape = filters->get_shape();
  auto& out_shape = doutput->get_shape();
  ngraph::NodeVector ng_slices;

  for (size_t i = 0; i < groups; ++i) {
    size_t channel_step = filter_shape.at(1);
    const std::vector<size_t> lower_bound{0, i * channel_step, 0, 0};
    const std::vector<size_t> upper_bound{data_shape.at(0),
                                          (i + 1) * channel_step,
                                          data_shape.at(2), data_shape.at(3)};
    auto data_slice = std::make_shared<ngraph::op::Slice>(
        data_batch, lower_bound, upper_bound);

    size_t filter_step = data_shape.at(0);

    const std::vector<size_t> filter_lower_bound{i * filter_step, 0, 0, 0};
    const std::vector<size_t> filter_upper_bound{
        (i + 1) * filter_step, filter_shape.at(1), filter_shape.at(2),
        filter_shape.at(3)};
    auto filter_slice = std::make_shared<ngraph::op::Slice>(
        filters, filter_lower_bound, filter_upper_bound);

    const std::vector<size_t> olower_bound{0, i * filter_step, 0, 0};
    const std::vector<size_t> oupper_bound{out_shape.at(0),
                                           (i + 1) * filter_step,
                                           out_shape.at(2), out_shape.at(3)};
    auto out_slice = std::make_shared<ngraph::op::Slice>(doutput, olower_bound,
                                                         oupper_bound);

    auto ng_conv = std::make_shared<ngraph::op::ConvolutionBackpropFilters>(
        data_slice, filter_slice->get_shape(), out_slice, strides, dilations,
        paddings, paddings, ngraph::Strides{1, 1});

    ng_slices.push_back(ng_conv);
  }

  size_t concat_axis = 0;
  return std::make_shared<ngraph::op::Concat>(ng_slices, concat_axis);
}

std::shared_ptr<ngraph::Node> GroupedGradConvolutionData(
    const std::shared_ptr<ngraph::Node>& data_batch,
    const std::shared_ptr<ngraph::Node>& filters,
    const std::shared_ptr<ngraph::Node>& doutput, const ngraph::Strides strides,
    const ngraph::Strides dilations, const ngraph::CoordinateDiff& paddings,
    size_t groups) {
  auto& data_shape = data_batch->get_shape();
  auto& filter_shape = filters->get_shape();
  auto& out_shape = doutput->get_shape();
  ngraph::NodeVector ng_slices;

  for (size_t i = 0; i < groups; ++i) {
    size_t channel_step = filter_shape.at(1);
    const std::vector<size_t> lower_bound{0, i * channel_step, 0, 0};
    const std::vector<size_t> upper_bound{data_shape.at(0),
                                          (i + 1) * channel_step,
                                          data_shape.at(2), data_shape.at(3)};
    auto data_slice = std::make_shared<ngraph::op::Slice>(
        data_batch, lower_bound, upper_bound);

    size_t filter_step = data_shape.at(0);

    const std::vector<size_t> filter_lower_bound{i * filter_step, 0, 0, 0};
    const std::vector<size_t> filter_upper_bound{
        (i + 1) * filter_step, filter_shape.at(1), filter_shape.at(2),
        filter_shape.at(3)};
    auto filter_slice = std::make_shared<ngraph::op::Slice>(
        filters, filter_lower_bound, filter_upper_bound);

    const std::vector<size_t> olower_bound{0, i * filter_step, 0, 0};
    const std::vector<size_t> oupper_bound{out_shape.at(0),
                                           (i + 1) * filter_step,
                                           out_shape.at(2), out_shape.at(3)};
    auto out_slice = std::make_shared<ngraph::op::Slice>(doutput, olower_bound,
                                                         oupper_bound);

    auto ng_conv = std::make_shared<ngraph::op::ConvolutionBackpropData>(
        data_slice->get_shape(), filter_slice, out_slice, strides, dilations,
        paddings, paddings, ngraph::Strides{1, 1});
    ng_slices.push_back(ng_conv);
  }

  size_t concat_axis = 1;
  return std::make_shared<ngraph::op::Concat>(ng_slices, concat_axis);
}

void BuildConv2dNode(
    const std::shared_ptr<paddle::framework::OperatorBase>& op,
    std::shared_ptr<
        std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
        ngb_node_map) {
  auto op_attrs = paddle::framework::AttrReader(op->Attrs());
  auto filters = paddle::platform::GetInputNode(op, "Filter", ngb_node_map);
  auto input = paddle::platform::GetInputNode(op, "Input", ngb_node_map);

  std::vector<int> strides = op_attrs.Get<std::vector<int>>("strides");
  std::vector<int> paddings = op_attrs.Get<std::vector<int>>("paddings");
  std::vector<int> dilations = op_attrs.Get<std::vector<int>>("dilations");

  const ngraph::Strides ng_strides{static_cast<size_t>(strides.at(0)),
                                   static_cast<size_t>(strides.at(1))};
  const ngraph::Strides ng_dilations{static_cast<size_t>(dilations.at(0)),
                                     static_cast<size_t>(dilations.at(1))};
  const ngraph::CoordinateDiff ng_paddings{
      static_cast<std::ptrdiff_t>(paddings.at(0)),
      static_cast<std::ptrdiff_t>(paddings.at(1))};

  int groups = static_cast<size_t>(op_attrs.Get<int>("groups"));
  PADDLE_ENFORCE_GE(groups, 1, "conv groups needs be no less than 1");

  std::shared_ptr<ngraph::Node> result;
  if (groups == 1) {
    result = std::make_shared<ngraph::op::Convolution>(
        input, filters, ng_strides, ng_dilations, ng_paddings, ng_paddings);
  } else {
    result = GroupedConvolution(input, filters, ng_strides, ng_dilations,
                                ng_paddings, groups);
  }
  paddle::platform::SetOutputNode(op, "Output", result, ngb_node_map);
}

void BuildConv2dGradNode(
    const std::shared_ptr<paddle::framework::OperatorBase>& op,
    std::shared_ptr<
        std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
        ngb_node_map) {
  auto op_attrs = paddle::framework::AttrReader(op->Attrs());
  auto filter = paddle::platform::GetInputNode(op, "Filter", ngb_node_map);
  auto input = paddle::platform::GetInputNode(op, "Input", ngb_node_map);
  auto doutput =
      paddle::platform::GetInputNode(op, "Output@GRAD", ngb_node_map);

  int groups = op_attrs.Get<int>("groups");
  std::vector<int> strides = op_attrs.Get<std::vector<int>>("strides");
  std::vector<int> paddings = op_attrs.Get<std::vector<int>>("paddings");
  std::vector<int> dilations = op_attrs.Get<std::vector<int>>("dilations");

  const ngraph::Strides ng_strides{static_cast<size_t>(strides.at(0)),
                                   static_cast<size_t>(strides.at(1))};
  const ngraph::Strides ng_dilations{static_cast<size_t>(dilations.at(0)),
                                     static_cast<size_t>(dilations.at(1))};
  const ngraph::CoordinateDiff ng_paddings{
      static_cast<std::ptrdiff_t>(paddings.at(0)),
      static_cast<std::ptrdiff_t>(paddings.at(1))};

  std::shared_ptr<ngraph::Node> dfilter;
  std::shared_ptr<ngraph::Node> dinput;
  if (groups == 1) {
    dfilter = std::make_shared<ngraph::op::ConvolutionBackpropFilters>(
        input, filter->get_shape(), doutput, ng_strides, ng_dilations,
        ng_paddings, ng_paddings, ngraph::Strides{1, 1});

    dinput = std::make_shared<ngraph::op::ConvolutionBackpropData>(
        input->get_shape(), filter, doutput, ng_strides, ng_dilations,
        ng_paddings, ng_paddings, ngraph::Strides{1, 1});

  } else {
    dfilter = GroupedGradConvolutionFilter(input, filter, doutput, ng_strides,
                                           ng_dilations, ng_paddings, groups);
    dinput = GroupedGradConvolutionData(input, filter, doutput, ng_strides,
                                        ng_dilations, ng_paddings, groups);
  }

  paddle::platform::SetOutputNode(op, "Filter@GRAD", dfilter, ngb_node_map);
  paddle::platform::SetOutputNode(op, "Input@GRAD", dinput, ngb_node_map);
}
}  // namespace ngraphs
}  // namespace operators
}  // namespace paddle
239 240 241

REGISTER_NG_OP(conv2d, BuildConv2dNode);
REGISTER_NG_OP(conv2d_grad, BuildConv2dGradNode);