fusion_group_op_test.cc 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/platform/device_code.h"
#include "paddle/fluid/platform/init.h"

namespace paddle {
namespace operators {

using CPUKernelFunc = std::function<void(size_t n, std::vector<void*> args)>;

template <typename T>
framework::Tensor* CreateTensor(framework::Scope* scope,
                                const platform::Place& place,
                                const std::string& name,
                                const std::vector<int64_t>& shape) {
  auto* var = scope->Var(name);
  auto* tensor = var->GetMutable<framework::LoDTensor>();
  if (shape.size() > 0) {
    tensor->mutable_data<T>(framework::make_ddim(shape), place);
  }
  return tensor;
}

template <typename T>
void SetupRandomCPUTensor(framework::Tensor* tensor,
                          const std::vector<int64_t>& shape) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);

  T* ptr = tensor->mutable_data<T>(framework::make_ddim(shape),
                                   platform::CPUPlace());
  for (int64_t i = 0; i < tensor->numel(); ++i) {
    ptr[i] = static_cast<T>(uniform_dist(rng)) - static_cast<T>(0.5);
  }
}

framework::OpDesc* CreateFusionGroupOp(
    framework::ProgramDesc* program,
    const std::vector<std::string>& input_names,
    const std::vector<std::vector<int64_t>>& input_shapes,
    const std::vector<std::string>& output_names, int type,
    std::string func_name) {
  EXPECT_EQ(input_names.size(), input_shapes.size());

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto* var = program->MutableBlock(0)->Var(input_names[i]);
    var->SetType(framework::proto::VarType::LOD_TENSOR);
    var->SetDataType(framework::proto::VarType::FP32);
    var->SetShape(input_shapes[i]);
  }
  for (size_t j = 0; j < output_names.size(); ++j) {
    auto* var = program->MutableBlock(0)->Var(output_names[j]);
    var->SetType(framework::proto::VarType::LOD_TENSOR);
    var->SetDataType(framework::proto::VarType::FP32);
  }

  auto* op = program->MutableBlock(0)->AppendOp();
  op->SetType("fusion_group");
  op->SetInput("Inputs", input_names);
  op->SetOutput("Outs", output_names);
  op->SetAttr("type", type);
  op->SetAttr("func_name", func_name);
  op->SetAttr(framework::OpProtoAndCheckerMaker::OpRoleAttrName(),
              static_cast<int>(framework::OpRole::kForward));
  return op;
}

void PrepareDeviceCode(platform::Place place, std::string func_name,
                       std::string cuda_kernel_str) {
  paddle::platform::DeviceCodePool& pool =
      paddle::platform::DeviceCodePool::Init({place});

  std::unique_ptr<paddle::platform::DeviceCode> code(
      new paddle::platform::CUDADeviceCode(place, func_name, cuda_kernel_str));
  code->Compile();
  pool.Set(std::move(code));
}

void CheckOutputs(framework::Scope* scope,
                  const std::vector<std::string>& output_names,
                  std::vector<framework::Tensor>* cpu_tensors,
                  size_t num_inputs, CPUKernelFunc cpu_kernel_func) {
  std::vector<framework::Tensor> cpu_outputs;
  cpu_outputs.resize(output_names.size());
  for (size_t j = 0; j < output_names.size(); ++j) {
    auto* var = scope->Var(output_names[j]);
    const auto& dev_tensor = var->Get<framework::LoDTensor>();
    TensorCopySync(dev_tensor, platform::CPUPlace(), &(cpu_outputs[j]));

    cpu_tensors->at(num_inputs + j)
        .mutable_data<float>(dev_tensor.dims(), platform::CPUPlace());
  }

  size_t n = cpu_tensors->at(0).numel();
  std::vector<void*> args;
  for (size_t i = 0; i < cpu_tensors->size(); ++i) {
    args.push_back(cpu_tensors->at(i).data<float>());
  }
  cpu_kernel_func(n, args);

  for (size_t j = 0; j < output_names.size(); ++j) {
    auto* dev_ptr = cpu_outputs[j].data<float>();
    auto* cpu_ptr = cpu_tensors->at(num_inputs + j).data<float>();
    int64_t length = cpu_outputs[j].numel();
    LOG(INFO) << "Check the " << j << "th output...";
    for (int64_t i = 0; i < length; ++i) {
      EXPECT_NEAR(dev_ptr[i], cpu_ptr[i], 1.E-05);
    }
  }
}

void TestMain(const std::vector<std::string>& input_names,
              const std::vector<std::vector<int64_t>>& input_shapes,
              const std::vector<std::string>& output_names, int type,
              std::string func_name, std::string cuda_kernel_str,
              CPUKernelFunc cpu_kernel_func) {
  // Compile the device code
  paddle::framework::InitDevices(false, {0});
  platform::CUDAPlace place = platform::CUDAPlace(0);
  PrepareDeviceCode(place, func_name, cuda_kernel_str);

  // Create a ProgramDesc that has a fusion_group_op.
  framework::ProgramDesc program;
  framework::OpDesc* op_desc = CreateFusionGroupOp(
      &program, input_names, input_shapes, output_names, type, func_name);
  auto fusion_group_op = framework::OpRegistry::CreateOp(*op_desc);

  framework::Scope scope;

  // Prepare input tensors.
  std::vector<framework::Tensor> cpu_tensors;
  cpu_tensors.resize(input_names.size() + output_names.size());
  for (size_t i = 0; i < input_names.size(); ++i) {
    SetupRandomCPUTensor<float>(&(cpu_tensors[i]), input_shapes[i]);
    framework::Tensor* dev_tensor =
        CreateTensor<float>(&scope, place, input_names[i], input_shapes[i]);
    TensorCopySync(cpu_tensors[i], place, dev_tensor);
  }
  // Create output tensors.
  std::vector<int64_t> empty_shape;
  for (size_t j = 0; j < output_names.size(); ++j) {
    CreateTensor<float>(&scope, place, output_names[j], empty_shape);
  }

  fusion_group_op->Run(scope, place);

  auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
  dev_ctx->Wait();

  // Check the output.
  CheckOutputs(&scope, output_names, &cpu_tensors, input_names.size(),
               cpu_kernel_func);
}

TEST(FusionGroupOp, elementwise) {
  if (!platform::dynload::HasNVRTC() || !platform::dynload::HasCUDADriver()) {
    return;
  }

  // z = relu(x + y)
  std::vector<std::string> input_names = {"x", "y"};
  std::vector<std::string> output_names = {"z"};
  std::vector<std::vector<int64_t>> input_shapes = {{256, 256}, {256, 256}};
  constexpr auto kernel = R"(
static inline __device__ float relu(float x) {
  return x * (x > 0);
}

extern "C" __global__
void elementwise_cuda_kernel_0(size_t n, float *x, float* y, float* z) {
  for (size_t tid = blockIdx.x * blockDim.x + threadIdx.x; tid < n;
       tid += blockDim.x * gridDim.x) {
    float tmp_0 = x[tid];
    float tmp_1 = y[tid];
    float tmp_2 = tmp_0 + tmp_1;
    float tmp_3 = relu(tmp_2);
    z[tid] = tmp_3;
  }
})";

  auto elementwise_cpu_kernel_0 = [](size_t n,
                                     std::vector<void*> args) -> void {
    float* x = static_cast<float*>(args[0]);
    float* y = static_cast<float*>(args[1]);
    float* z = static_cast<float*>(args[2]);
    for (size_t i = 0; i < n; ++i) {
      float tmp_0 = x[i];
      float tmp_1 = y[i];
      float tmp_2 = tmp_0 + tmp_1;
      float tmp_3 = tmp_2 > 0 ? tmp_2 : 0;
      z[i] = tmp_3;
    }
  };

  TestMain(input_names, input_shapes, output_names, 0,
           "elementwise_cuda_kernel_0", kernel, elementwise_cpu_kernel_0);
}

}  // namespace operators
}  // namespace paddle

USE_CUDA_ONLY_OP(fusion_group);