lerp_grad_kernel_impl.h 4.7 KB
Newer Older
0
0x45f 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/pten/kernels/funcs/common_shape.h"
#include "paddle/pten/kernels/funcs/eigen/common.h"

namespace pten {

template <typename Context, typename T, size_t D>
static void LerpGradFunction(const Context& ctx,
                             const DenseTensor& x,
                             const DenseTensor& y,
                             const DenseTensor& weight,
                             const DenseTensor& out,
                             const DenseTensor& out_grad,
                             DenseTensor* x_grad,
                             DenseTensor* y_grad) {
  auto& w = weight;
  auto& dout = out_grad;
  auto* dx = x_grad;
  auto* dy = y_grad;

  auto dout_dims = dout.dims();
  auto dx_dims = pten::funcs::ExtendDims2Rank(dx->dims(), D);
  auto dy_dims = pten::funcs::ExtendDims2Rank(dy->dims(), D);
  auto w_dims = pten::funcs::ExtendDims2Rank(w.dims(), D);
  Eigen::DSizes<int, D> dx_bcast_dims;
  Eigen::DSizes<int, D> dy_bcast_dims;
  Eigen::DSizes<int, D> w_bcast_dims;
  pten::funcs::GetBroadcastDims<D>(dx_dims, dout_dims, &dx_bcast_dims);
  pten::funcs::GetBroadcastDims<D>(dy_dims, dout_dims, &dy_bcast_dims);
  pten::funcs::GetBroadcastDims<D>(w_dims, dout_dims, &w_bcast_dims);

  auto eigen_w = pten::EigenTensor<T, D>::From(w, w_dims);
  auto eigen_dout = pten::EigenTensor<T, D>::From(dout);

  Eigen::DSizes<int, D * 2> dx_reshape_dims;
  Eigen::DSizes<int, D * 2> dy_reshape_dims;
  Eigen::DSizes<int, D> reduce_dims;
  for (int i = 0; i < dout_dims.size(); ++i) {
    dx_reshape_dims[2 * i] = dx_bcast_dims[i];
    dx_reshape_dims[2 * i + 1] = dx_dims[i];
    dy_reshape_dims[2 * i] = dy_bcast_dims[i];
    dy_reshape_dims[2 * i + 1] = dy_dims[i];
    reduce_dims[i] = 2 * i;
  }

  auto& place = *ctx.eigen_device();

  if (dx) {
    ctx.template Alloc<T>(dx);
    auto eigen_dx = pten::EigenTensor<T, D>::From(*dx, dx_dims);
    auto eigen_expr = (1 - eigen_w.broadcast(w_bcast_dims)) * eigen_dout;
    eigen_dx.device(place) = eigen_expr.reshape(dx_reshape_dims)
                                 .sum(reduce_dims)
                                 .reshape(eigen_dx.dimensions());
  }
  if (dy) {
    ctx.template Alloc<T>(dy);
    auto eigen_dy = pten::EigenTensor<T, D>::From(*dy, dy_dims);
    auto eigen_expr = eigen_w.broadcast(w_bcast_dims) * eigen_dout;
    eigen_dy.device(place) = eigen_expr.reshape(dy_reshape_dims)
                                 .sum(reduce_dims)
                                 .reshape(eigen_dy.dimensions());
  }
}

template <typename T, typename Context>
void LerpGradKernel(const Context& ctx,
                    const DenseTensor& x,
                    const DenseTensor& y,
                    const DenseTensor& weight,
                    const DenseTensor& out,
                    const DenseTensor& out_grad,
                    DenseTensor* x_grad,
                    DenseTensor* y_grad) {
  int rank = out.dims().size();
  PADDLE_ENFORCE_GE(
      rank,
      1,
      pten::errors::InvalidArgument(
          "The number of dimensions for LerpGradOp must be "
          "greater than or equal to 1, but the value received is %d.",
          rank));
  PADDLE_ENFORCE_LE(
      rank,
      6,
      pten::errors::InvalidArgument(
          "The number of dimensions for LerpGradOp must be "
          "less than or equal to 6, but the value received is %d.",
          rank));
  switch (rank) {
    case 1:
      LerpGradFunction<Context, T, 1>(
          ctx, x, y, weight, out, out_grad, x_grad, y_grad);
      break;
    case 2:
      LerpGradFunction<Context, T, 2>(
          ctx, x, y, weight, out, out_grad, x_grad, y_grad);
      break;
    case 3:
      LerpGradFunction<Context, T, 3>(
          ctx, x, y, weight, out, out_grad, x_grad, y_grad);
      break;
    case 4:
      LerpGradFunction<Context, T, 4>(
          ctx, x, y, weight, out, out_grad, x_grad, y_grad);
      break;
    case 5:
      LerpGradFunction<Context, T, 5>(
          ctx, x, y, weight, out, out_grad, x_grad, y_grad);
      break;
    case 6:
      LerpGradFunction<Context, T, 6>(
          ctx, x, y, weight, out, out_grad, x_grad, y_grad);
      break;
  }
}

}  // namespace pten