analyzer_ner_tester.cc 7.0 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

L
luotao1 已提交
15
#include "paddle/fluid/inference/tests/api/tester_helper.h"
L
luotao1 已提交
16 17 18 19 20 21 22 23 24 25

namespace paddle {
namespace inference {

struct DataRecord {
  std::vector<std::vector<int64_t>> word_data_all, mention_data_all;
  std::vector<std::vector<int64_t>> rnn_word_datas, rnn_mention_datas;
  std::vector<size_t> lod;  // two inputs have the same lod info.
  size_t batch_iter{0};
  size_t batch_size{1};
L
luotao1 已提交
26
  size_t num_samples;  // total number of samples
L
luotao1 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1)
      : batch_size(batch_size) {
    Load(path);
  }
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= word_data_all.size()) {
      data.word_data_all.assign(word_data_all.begin() + batch_iter,
                                word_data_all.begin() + batch_end);
      data.mention_data_all.assign(mention_data_all.begin() + batch_iter,
                                   mention_data_all.begin() + batch_end);
      // Prepare LoDs
      data.lod.push_back(0);
      CHECK(!data.word_data_all.empty());
      CHECK(!data.mention_data_all.empty());
      CHECK_EQ(data.word_data_all.size(), data.mention_data_all.size());
      for (size_t j = 0; j < data.word_data_all.size(); j++) {
        data.rnn_word_datas.push_back(data.word_data_all[j]);
        data.rnn_mention_datas.push_back(data.mention_data_all[j]);
        // calculate lod
        data.lod.push_back(data.lod.back() + data.word_data_all[j].size());
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ';', &data);
      // load word data
      std::vector<int64_t> word_data;
      split_to_int64(data[1], ' ', &word_data);
      // load mention data
      std::vector<int64_t> mention_data;
      split_to_int64(data[3], ' ', &mention_data);
      word_data_all.push_back(std::move(word_data));
      mention_data_all.push_back(std::move(mention_data));
    }
L
luotao1 已提交
73
    num_samples = num_lines;
L
luotao1 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
  }
};

void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor lod_word_tensor, lod_mention_tensor;
  lod_word_tensor.name = "word";
  lod_mention_tensor.name = "mention";
  auto one_batch = data->NextBatch();
  int size = one_batch.lod[one_batch.lod.size() - 1];  // token batch size
  lod_word_tensor.shape.assign({size, 1});
  lod_word_tensor.lod.assign({one_batch.lod});
  lod_mention_tensor.shape.assign({size, 1});
  lod_mention_tensor.lod.assign({one_batch.lod});
  // assign data
  TensorAssignData<int64_t>(&lod_word_tensor, one_batch.rnn_word_datas);
  TensorAssignData<int64_t>(&lod_mention_tensor, one_batch.rnn_mention_datas);
  // Set inputs.
  input_slots->assign({lod_word_tensor, lod_mention_tensor});
  for (auto &tensor : *input_slots) {
    tensor.dtype = PaddleDType::INT64;
  }
}

// the first inference result
const int chinese_ner_result_data[] = {30, 45, 41, 48, 17, 26,
                                       48, 39, 38, 16, 25};

102
void TestChineseNERPrediction(bool use_analysis) {
L
luotao1 已提交
103 104 105 106 107 108 109
  AnalysisConfig cfg;
  cfg.prog_file = FLAGS_infer_model + "/__model__";
  cfg.param_file = FLAGS_infer_model + "/param";
  cfg.use_gpu = false;
  cfg.device = 0;
  cfg.specify_input_name = true;
  cfg.enable_ir_optim = true;
L
luotao1 已提交
110

111 112
  std::vector<PaddleTensor> input_slots, outputs;
  std::unique_ptr<PaddlePredictor> predictor;
L
luotao1 已提交
113
  Timer timer;
114 115 116 117 118
  if (use_analysis) {
    predictor =
        CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(cfg);
  } else {
    predictor =
L
luotao1 已提交
119
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(cfg);
120
  }
L
luotao1 已提交
121 122 123

  if (FLAGS_test_all_data) {
    LOG(INFO) << "test all data";
L
luotao1 已提交
124 125 126 127 128
    DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
    std::vector<std::vector<PaddleTensor>> input_slots_all;
    for (size_t bid = 0; bid < data.num_samples / FLAGS_batch_size; ++bid) {
      PrepareInputs(&input_slots, &data, FLAGS_batch_size);
      input_slots_all.emplace_back(input_slots);
L
luotao1 已提交
129
    }
L
luotao1 已提交
130 131
    LOG(INFO) << "total number of samples: " << data.num_samples;
    TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads);
L
luotao1 已提交
132 133
    return;
  }
L
luotao1 已提交
134
  // Prepare inputs.
L
luotao1 已提交
135
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
L
luotao1 已提交
136 137 138 139 140 141
  PrepareInputs(&input_slots, &data, FLAGS_batch_size);

  timer.tic();
  for (int i = 0; i < FLAGS_repeat; i++) {
    predictor->Run(input_slots, &outputs);
  }
L
luotao1 已提交
142
  PrintTime(FLAGS_batch_size, FLAGS_repeat, 1, 0, timer.toc() / FLAGS_repeat);
L
luotao1 已提交
143 144 145 146 147 148 149 150 151 152

  PADDLE_ENFORCE(outputs.size(), 1UL);
  auto &out = outputs[0];
  size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                [](int a, int b) { return a * b; });
  PADDLE_ENFORCE_GT(size, 0);
  int64_t *result = static_cast<int64_t *>(out.data.data());
  for (size_t i = 0; i < std::min(11UL, size); i++) {
    PADDLE_ENFORCE(result[i], chinese_ner_result_data[i]);
  }
153 154 155 156

  if (use_analysis) {
    // run once for comparion as reference
    auto ref_predictor =
L
luotao1 已提交
157
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(cfg);
158 159
    std::vector<PaddleTensor> ref_outputs_slots;
    ref_predictor->Run(input_slots, &ref_outputs_slots);
L
luotao1 已提交
160
    CompareResult(ref_outputs_slots, outputs);
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

    AnalysisPredictor *analysis_predictor =
        dynamic_cast<AnalysisPredictor *>(predictor.get());
    auto &fuse_statis = analysis_predictor->analysis_argument()
                            .Get<std::unordered_map<std::string, int>>(
                                framework::ir::kFuseStatisAttr);
    for (auto &item : fuse_statis) {
      LOG(INFO) << "fused " << item.first << " " << item.second;
    }
    int num_ops = 0;
    for (auto &node :
         analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
      if (node->IsFunction()) {
        ++num_ops;
      }
    }
    LOG(INFO) << "has num ops: " << num_ops;
    ASSERT_TRUE(fuse_statis.count("fc_fuse"));
    ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
    EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
    EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 2);
    EXPECT_EQ(num_ops, 14);
  }
L
luotao1 已提交
184 185
}

186 187 188
TEST(Analyzer_Chinese_ner, native) { TestChineseNERPrediction(false); }

TEST(Analyzer_Chinese_ner, analysis) { TestChineseNERPrediction(true); }
L
luotao1 已提交
189 190 191

}  // namespace inference
}  // namespace paddle