sync_batch_norm_kernel.cu 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/sync_batch_norm_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/sync_batch_norm_utils.h"

namespace phi {

template <typename T, typename Context>
void SyncBatchNormKernel(const Context &ctx,
                         const DenseTensor &x,
                         const DenseTensor &scale,
                         const DenseTensor &bias,
                         const DenseTensor &mean,
                         const DenseTensor &variance,
                         float momentum,
                         float epsilon_f,
                         const std::string &data_layout_str,
                         bool is_test,
                         bool use_global_stats,
                         bool trainable_statistics,
                         bool fuse_with_relu,
                         DenseTensor *y,
                         DenseTensor *mean_out,
                         DenseTensor *variance_out,
                         DenseTensor *saved_mean,
                         DenseTensor *saved_variance,
                         DenseTensor *reserve_space) {
  PADDLE_ENFORCE_EQ(use_global_stats,
                    false,
                    phi::errors::InvalidArgument(
                        "sync_batch_norm doesn't support "
                        "to set use_global_stats True. Please use batch_norm "
                        "in this case."));

  double epsilon = epsilon_f;
  const bool trainable_stats = trainable_statistics;
  const DataLayout layout =
      paddle::framework::StringToDataLayout(data_layout_str);
  bool test_mode = is_test && (!trainable_statistics);
  const auto &x_dims = x.dims();
  PADDLE_ENFORCE_GE(x_dims.size(),
                    2,
                    phi::errors::InvalidArgument(
                        "The Input dim size should be larger than 1."));
  PADDLE_ENFORCE_LE(x_dims.size(),
                    5,
                    phi::errors::InvalidArgument(
                        "The Input dim size should be less than 6."));
  int N, C, H, W, D;
  funcs::ExtractNCWHD(x_dims, layout, &N, &C, &H, &W, &D);
  int x_numel = x.numel();

  const T *x_d = x.template data<T>();
  const auto *s_d = scale.template data<BatchNormParamType<T>>();
  const auto *b_d = bias.template data<BatchNormParamType<T>>();

  T *y_d = ctx.template Alloc<T>(y);

  const BatchNormParamType<T> *mean_data = nullptr;
  const BatchNormParamType<T> *var_data = nullptr;

  auto stream = ctx.stream();
  const int block = 512;
  int max_threads = ctx.GetMaxPhysicalThreadCount();

  paddle::memory::AllocationPtr alloc_ptr{nullptr};

  if (test_mode) {
    mean_data = mean.template data<BatchNormParamType<T>>();
    var_data = variance.template data<BatchNormParamType<T>>();
  } else {
    // x, x^2, 1, here 1 is used to calc device num
    // device num also can be got from platform::DeviceContextPool
    const int bytes = (C * 2 + 1) * sizeof(BatchNormParamType<T>);
89 90 91 92
    alloc_ptr = paddle::memory::Alloc(
        ctx.GetPlace(),
        bytes,
        phi::Stream(reinterpret_cast<phi::StreamId>(ctx.stream())));
93 94 95 96 97 98 99 100 101 102 103 104 105

    auto *stats = reinterpret_cast<BatchNormParamType<T> *>(alloc_ptr->ptr());
    const int threads = 256;
    int grid = std::min(C, (max_threads + threads - 1) / threads);
    if (layout == paddle::framework::DataLayout::kNCHW) {
      KeLocalStats<T, threads, paddle::framework::DataLayout::kNCHW>
          <<<grid, threads, 0, stream>>>(x_d, N, H * W * D, C, stats);
    } else {
      KeLocalStats<T, threads, paddle::framework::DataLayout::kNHWC>
          <<<grid, threads, 0, stream>>>(x_d, N, H * W * D, C, stats);
    }

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
LiYuRio 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118
    int global_gid = 0;
    ncclComm_t comm = nullptr;

    if (paddle::distributed::ProcessGroupMapFromGid::getInstance()->has(
            global_gid)) {
      auto *nccl_pg = static_cast<paddle::distributed::ProcessGroupNCCL *>(
          paddle::distributed::ProcessGroupMapFromGid::getInstance()->get(
              global_gid));
      comm = nccl_pg->NCCLComm(x.place());
    } else {
      comm = ctx.nccl_comm();
    }

119 120 121 122 123 124 125 126 127 128 129 130
    if (comm) {
      int dtype = paddle::platform::ToNCCLDataType(
          paddle::framework::TransToProtoVarType(mean_out->dtype()));
      // In-place operation
      PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::ncclAllReduce(
          stats,
          stats,
          2 * C + 1,
          static_cast<ncclDataType_t>(dtype),
          ncclSum,
          comm,
          stream));
L
LiYuRio 已提交
131
      VLOG(3) << "Sync result using all reduce";
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    }
#endif

    auto *est_mean_data = ctx.template Alloc<BatchNormParamType<T>>(mean_out);
    auto *est_var_data =
        ctx.template Alloc<BatchNormParamType<T>>(variance_out);

    auto *sv_mean_data = ctx.template Alloc<BatchNormParamType<T>>(saved_mean);
    auto *sv_inv_var_data =
        ctx.template Alloc<BatchNormParamType<T>>(saved_variance);

    // Note, Input('Mean')/Input('Variance') share variable with
    // Output('MeanOut')/Output('VarianceOut')
    KeSyncAndMovingStats<T>
        <<<(C + block - 1) / block, block, 0, stream>>>(stats,
                                                        stats + C,
                                                        stats + 2 * C,
                                                        C,
                                                        momentum,
                                                        epsilon,
                                                        sv_mean_data,
                                                        sv_inv_var_data,
                                                        est_mean_data,
                                                        est_var_data);

    mean_data = sv_mean_data;
    var_data = stats + C;
  }

  int grid2 = (std::min(x_numel, max_threads) + block - 1) / block;
  if (layout == paddle::framework::DataLayout::kNCHW) {
    KeNormAffine<T, paddle::framework::DataLayout::kNCHW>
        <<<grid2, block, 0, stream>>>(x_d,
                                      s_d,
                                      b_d,
                                      mean_data,
                                      var_data,
                                      epsilon,
                                      C,
                                      H * W * D,
                                      x_numel,
                                      y_d);
  } else {
    KeNormAffine<T, paddle::framework::DataLayout::kNHWC>
        <<<grid2, block, 0, stream>>>(x_d,
                                      s_d,
                                      b_d,
                                      mean_data,
                                      var_data,
                                      epsilon,
                                      C,
                                      H * W * D,
                                      x_numel,
                                      y_d);
  }
}

}  // namespace phi

#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL(sync_batch_norm,
                   GPU,
                   ALL_LAYOUT,
                   phi::SyncBatchNormKernel,
                   float,
197 198 199 200 201 202 203 204 205 206 207 208
                   phi::dtype::float16) {
  if (kernel_key.dtype() == phi::DataType::FLOAT16) {
    kernel->InputAt(1).SetDataType(phi::DataType::FLOAT32);
    kernel->InputAt(2).SetDataType(phi::DataType::FLOAT32);
    kernel->InputAt(3).SetDataType(phi::DataType::FLOAT32);
    kernel->InputAt(4).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(1).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(2).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(3).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(4).SetDataType(phi::DataType::FLOAT32);
  }
}
209 210 211 212 213 214 215
#else
PD_REGISTER_KERNEL(sync_batch_norm,
                   GPU,
                   ALL_LAYOUT,
                   phi::SyncBatchNormKernel,
                   float,
                   double,
216 217 218 219 220 221 222 223 224 225 226 227
                   phi::dtype::float16) {
  if (kernel_key.dtype() == phi::DataType::FLOAT16) {
    kernel->InputAt(1).SetDataType(phi::DataType::FLOAT32);
    kernel->InputAt(2).SetDataType(phi::DataType::FLOAT32);
    kernel->InputAt(3).SetDataType(phi::DataType::FLOAT32);
    kernel->InputAt(4).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(1).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(2).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(3).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(4).SetDataType(phi::DataType::FLOAT32);
  }
}
228
#endif