test_scale_op.py 10.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, convert_float_to_uint16
20
import paddle
21
import paddle.fluid as fluid
22 23
import paddle.fluid.core as core
from paddle.fluid.op import Operator
24
from paddle.static import Program, program_guard
25 26 27
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
Y
Yu Yang 已提交
28 29


30
class TestScaleOp(OpTest):
31

Y
Yu Yang 已提交
32
    def setUp(self):
Q
qijun 已提交
33
        self.op_type = "scale"
34
        self.python_api = paddle.scale
35
        self.dtype = np.float64
C
chengduo 已提交
36 37
        self.init_dtype_type()
        self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
Y
Yu Yang 已提交
38
        self.attrs = {'scale': -2.3}
C
chengduo 已提交
39 40 41 42 43 44
        self.outputs = {
            'Out': self.inputs['X'] * self.dtype(self.attrs['scale'])
        }

    def init_dtype_type(self):
        pass
Y
Yu Yang 已提交
45

Q
qijun 已提交
46
    def test_check_output(self):
47
        self.check_output(check_eager=True)
Y
Yu Yang 已提交
48

Q
qijun 已提交
49
    def test_check_grad(self):
50
        self.check_grad(['X'], 'Out', check_eager=True)
Y
Yu Yang 已提交
51 52


53
class TestScaleOpScaleVariable(OpTest):
54

55 56
    def setUp(self):
        self.op_type = "scale"
57
        self.python_api = paddle.scale
58
        self.dtype = np.float64
59 60 61 62
        self.init_dtype_type()
        self.scale = -2.3
        self.inputs = {
            'X': np.random.random((10, 10)).astype(self.dtype),
63
            'ScaleTensor': np.array([self.scale]).astype('float64')
64 65 66 67 68 69 70 71
        }
        self.attrs = {}
        self.outputs = {'Out': self.inputs['X'] * self.dtype(self.scale)}

    def init_dtype_type(self):
        pass

    def test_check_output(self):
72
        self.check_output(check_eager=True)
73 74

    def test_check_grad(self):
75
        self.check_grad(['X'], 'Out', check_eager=True)
76 77


78
class TestScaleOpSelectedRows(unittest.TestCase):
79

C
chengduo 已提交
80 81 82
    def init_dtype_type(self):
        pass

83 84 85
    def check_with_place(self, place, in_name, out_name):
        scope = core.Scope()

86
        self.dtype = np.float64
C
chengduo 已提交
87 88
        self.init_dtype_type()

89 90 91 92 93 94 95 96 97 98
        # create and initialize Grad Variable
        in_height = 10
        in_rows = [0, 4, 7]
        in_row_numel = 12
        scale = 2.0

        in_selected_rows = scope.var(in_name).get_selected_rows()
        in_selected_rows.set_height(in_height)
        in_selected_rows.set_rows(in_rows)
        in_array = np.random.random(
C
chengduo 已提交
99
            (len(in_rows), in_row_numel)).astype(self.dtype)
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

        in_tensor = in_selected_rows.get_tensor()
        in_tensor.set(in_array, place)

        # create and initialize Param Variable
        out_selected_rows = scope.var(out_name).get_selected_rows()
        out_tensor = out_selected_rows.get_tensor()
        out_tensor._set_dims(in_tensor._get_dims())

        # create and run sgd operator
        scale_op = Operator("scale", X=in_name, Out=out_name, scale=scale)
        scale_op.run(scope, place)

        # get and compare result
        out_height = out_selected_rows.height()
        out_rows = out_selected_rows.rows()
        result_array = np.array(out_tensor)

        assert (in_array * scale == result_array).all()
        assert in_height == out_height
120
        assert in_rows == out_rows
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

    def test_scale_selected_rows(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place, 'in', 'out')

    def test_scale_selected_rows_inplace(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place, 'in', 'in')


137
class TestScaleRaiseError(unittest.TestCase):
138

139
    def test_errors(self):
140

141 142 143 144 145 146
        def test_type():
            fluid.layers.scale([10])

        self.assertRaises(TypeError, test_type)


C
chengduo 已提交
147 148 149 150
# Add FP16 test
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScaleFp16Op(TestScaleOp):
151

C
chengduo 已提交
152 153 154 155 156 157
    def init_dtype_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
158
            self.check_output_with_place(place, atol=0.002, check_eager=True)
C
chengduo 已提交
159 160 161 162

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
163 164 165 166
            self.check_grad_with_place(place, ["X"],
                                       "Out",
                                       max_relative_error=0.05,
                                       check_eager=True)
C
chengduo 已提交
167 168


169
class TestScaleBF16Op(OpTest):
170

171 172
    def setUp(self):
        self.op_type = "scale"
173
        self.python_api = paddle.scale
174 175 176 177 178 179 180 181
        self.dtype = np.uint16
        self.attrs = {'scale': -2.3}
        x = np.random.random((10, 10)).astype(np.float32)
        out = x * np.float32(self.attrs['scale'])
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
182
        self.check_output(check_eager=True)
183 184

    def test_check_grad(self):
185
        self.check_grad(['X'], 'Out', numeric_grad_delta=0.8, check_eager=True)
186 187


C
chengduo 已提交
188 189 190
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScaleFp16OpSelectedRows(TestScaleOpSelectedRows):
191

C
chengduo 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205
    def init_dtype_type(self):
        self.dtype = np.float16

    def test_scale_selected_rows(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_with_place(place, 'in', 'out')

    def test_scale_selected_rows_inplace(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_with_place(place, 'in', 'in')


206
class TestScaleApiStatic(unittest.TestCase):
207

208 209 210 211 212 213 214 215 216 217 218 219 220
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return paddle.scale(x, scale, bias)

    def test_api(self):
        paddle.enable_static()
        input = np.random.random([2, 25]).astype("float32")
        main_prog = Program()
        with program_guard(main_prog, Program()):
            x = paddle.static.data(name="x", shape=[2, 25], dtype="float32")
            out = self._executed_api(x, scale=2.0, bias=3.0)

        exe = paddle.static.Executor(place=paddle.CPUPlace())
        out = exe.run(main_prog, feed={"x": input}, fetch_list=[out])
221
        np.testing.assert_array_equal(out[0], input * 2.0 + 3.0)
222 223 224


class TestScaleInplaceApiStatic(TestScaleApiStatic):
225

226 227 228 229 230
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return x.scale_(scale, bias)


class TestScaleApiDygraph(unittest.TestCase):
231

232 233 234 235 236 237 238 239
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return paddle.scale(x, scale, bias)

    def test_api(self):
        paddle.disable_static()
        input = np.random.random([2, 25]).astype("float32")
        x = paddle.to_tensor(input)
        out = self._executed_api(x, scale=2.0, bias=3.0)
240
        np.testing.assert_array_equal(out.numpy(), input * 2.0 + 3.0)
241 242 243 244
        paddle.enable_static()


class TestScaleInplaceApiDygraph(TestScaleApiDygraph):
245

246 247 248 249
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return x.scale_(scale, bias)


250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
class TestScaleDoubleGradCheck(unittest.TestCase):

    def scale_wrapper(self, x):
        return paddle.scale(x[0], scale=2.0)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3], False, dtype)
        data.persistable = True
        out = paddle.scale(data, 2.0)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.double_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(self.scale_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestScaleTripleGradCheck(unittest.TestCase):

    def scale_wrapper(self, x):
        return paddle.scale(x[0], scale=2.0)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3], False, dtype)
        data.persistable = True
        out = paddle.scale(data, 2.0)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.triple_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(self.scale_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qijun 已提交
324
if __name__ == "__main__":
Y
Yu Yang 已提交
325
    unittest.main()