recurrent_network_op_test.cc 12.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*
  Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at
  http://www.apache.org/licenses/LICENSE-2.0
  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License.
*/

#include <glog/logging.h>
#include <gtest/gtest.h>

#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/recurrent_network_op.h"

namespace paddle {
namespace operators {

class RecurrentOpTest : public ::testing::Test {
protected:
  virtual void SetUp() override {
    CreateGlobalVariables();
    CreateStepNet();
    CreateRNNOp();
  }

  virtual void TearDown() override {}

  void CreateGlobalVariables() {
    scope_ = std::make_shared<Scope>();
    // create input, and init content
    LOG(INFO) << "create global variable x";
    for (auto inlink : std::vector<std::string>{"x", "x0", "x1", "h"}) {
41
      Variable* x = scope_->NewVar(inlink);
Y
Yan Chunwei 已提交
42 43 44 45 46 47
      DDim dims = make_ddim(std::vector<int>{
          10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
      x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
    }
    // create output alias just for test
    for (auto inlink : std::vector<std::string>{"h@alias"}) {
48
      Variable* x = scope_->NewVar(inlink);
Y
Yan Chunwei 已提交
49 50 51 52 53 54
      DDim dims =
          make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/});
      x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
    }

    LOG(INFO) << "create global variable w";
55
    Variable* w = scope_->NewVar("rnn/w");
Y
Yan Chunwei 已提交
56 57 58 59 60
    w->GetMutable<Tensor>()->mutable_data<float>(
        make_ddim(std::vector<int>{30, 30}), platform::CPUPlace());

    for (auto boot : std::vector<std::string>{"x_boot", "h_boot"}) {
      LOG(INFO) << "create global variable " << boot;
61
      Variable* h_boot = scope_->NewVar(boot);
Y
Yan Chunwei 已提交
62 63 64 65 66 67
      h_boot->GetMutable<Tensor>()->mutable_data<float>(
          make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/}),
          platform::CPUPlace());
    }

    LOG(INFO) << "create variable step_scopes";
68
    scope_->NewVar("step_scopes");
Y
Yan Chunwei 已提交
69 70

    LOG(INFO) << "create variable h";
71
    scope_->NewVar("h");
Y
Yan Chunwei 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
  }

  void CreateRNNOp() {
    OpDesc op_desc;

    op_desc.set_type("recurrent_op");
    // inlinks 0
    op_desc.add_inputs("x");
    op_desc.add_inputs("x0");
    op_desc.add_inputs("x1");
    // boot_memories 3
    op_desc.add_inputs("x_boot");
    op_desc.add_inputs("h_boot");
    // step net 5
    op_desc.add_inputs("step_net");
    // outlinks 6
    op_desc.add_outputs("h");
    // step scopes 7
    op_desc.add_outputs("step_scopes");

    auto _input_format = std::vector<int>{
        0,  // in_link
        3,  // memories
        5   // step_net
    };
    auto input_format = op_desc.add_attrs();
    input_format->set_name("input_format");
    input_format->set_type(paddle::framework::AttrType::INTS);
    for (auto i : _input_format) {
      input_format->add_ints(i);
    }

    auto output_format = op_desc.add_attrs();
    output_format->set_name("output_format");
    output_format->set_type(paddle::framework::AttrType::INTS);
    for (auto i : std::vector<int>{0, 1, 2}) {
      output_format->add_ints(i);
    }

    auto inlink_alias = op_desc.add_attrs();
    inlink_alias->set_name("inlink_alias");
    inlink_alias->set_type(paddle::framework::AttrType::STRINGS);

    auto outlink_alias = op_desc.add_attrs();
    outlink_alias->set_name("outlink_alias");
    outlink_alias->set_type(paddle::framework::AttrType::STRINGS);

    auto pre_memories = op_desc.add_attrs();
    pre_memories->set_name("pre_memories");
    pre_memories->set_type(paddle::framework::AttrType::STRINGS);

    auto memories = op_desc.add_attrs();
    memories->set_name("memories");
    memories->set_type(paddle::framework::AttrType::STRINGS);

    // create inlink_alias
    for (const auto& item :
         std::vector<std::string>{"x@alias", "x0@alias", "x1@alias"}) {
      inlink_alias->add_strings(item);
    }
    // pre memories
    for (const auto& item :
         std::vector<std::string>{"rnn/x@pre", "rnn/h@pre"}) {
      pre_memories->add_strings(item);
    }
    // memories
    for (const auto& item : std::vector<std::string>{"rnn/x", "rnn/h"}) {
      memories->add_strings(item);
    }
    // output alias
    for (const auto& item : std::vector<std::string>{"h@alias"}) {
      outlink_alias->add_strings(item);
    }

    rnn_op_ = OpRegistry::CreateOp(op_desc);

    LOG(INFO) << "rnn_op finish init";
  }

  void CreateStepNet() {
    LOG(INFO) << "create variable step_net";
153
    Variable* var = scope_->NewVar("step_net");
Y
Yan Chunwei 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    auto net = var->GetMutable<NetOp>();
    // rnn/s is net's input or output?
    net->inputs_ = {"rnn/h@pre", "rnn/w", "rnn/x"};
    net->inputs_ = {"rnn/s", "rnn/h"};
    net->AddOp(
        OpRegistry::CreateOp("mul", {"rnn/h@pre", "rnn/w"}, {"rnn/s"}, {}));

    net->AddOp(
        OpRegistry::CreateOp("add_two", {"rnn/x", "rnn/s"}, {"rnn/h"}, {}));
    net->CompleteAddOp();
  }

  // father scope
  std::shared_ptr<Scope> scope_;
  std::shared_ptr<OperatorBase> rnn_op_;
};

TEST_F(RecurrentOpTest, Run) {
  platform::CPUDeviceContext ctx;
  rnn_op_->InferShape(scope_);
  rnn_op_->Run(scope_, ctx);
}

class RecurrentGradientAlgorithmTest : public ::testing::Test {
protected:
  virtual void SetUp() override {
    CreateGlobalVariables();
    CreateStepScopes();
    CreateStepNet();
    CreateRNNGradientAlgorithm();

    // segment inputs
    SegmentInputs();
    // link forward memories
    LinkeMemories();
  }

  virtual void TearDown() override {}

  void CreateGlobalVariables() {
    scope_ = std::make_shared<Scope>();
    // inputs: x
    LOG(INFO) << "create global variable x";
197
    Variable* x = scope_->NewVar("x");
Y
Yan Chunwei 已提交
198 199 200 201 202
    DDim dims =
        make_ddim({10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
    x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
    // inputs: h_boot
    LOG(INFO) << "create global variable h_boot";
203
    Variable* h_boot = scope_->NewVar("h_boot");
Y
Yan Chunwei 已提交
204 205 206 207
    h_boot->GetMutable<Tensor>()->mutable_data<float>(
        make_ddim({20 /*batch size*/, 30 /*input dim*/}), platform::CPUPlace());
    // inputs: w
    LOG(INFO) << "create global variable w";
208
    Variable* w = scope_->NewVar("rnn/w");
Y
Yan Chunwei 已提交
209 210 211 212
    w->GetMutable<Tensor>()->mutable_data<float>(make_ddim({30, 30}),
                                                 platform::CPUPlace());
    // inputs: h_grad
    LOG(INFO) << "create variable h_grad";
213
    Variable* dh = scope_->NewVar("h_grad");
Y
Yan Chunwei 已提交
214 215 216 217
    dh->GetMutable<Tensor>()->mutable_data<float>(make_ddim({10, 20, 30}),
                                                  platform::CPUPlace());
    // inputs: step_scopes
    LOG(INFO) << "create variable step_scopes";
218
    scope_->NewVar("step_scopes");
Y
Yan Chunwei 已提交
219 220
    // inputs: step_net
    LOG(INFO) << "create variable step_net";
221
    scope_->NewVar("step_net");
Y
Yan Chunwei 已提交
222 223
    // outputs: w_grad
    LOG(INFO) << "create global variable w_grad";
224
    scope_->NewVar("rnn/w_grad");
Y
Yan Chunwei 已提交
225 226
    // outputs: x_grad
    LOG(INFO) << "create global variable x_grad";
227
    scope_->NewVar("x_grad");
Y
Yan Chunwei 已提交
228 229
    // outputs: h_boot_grad
    LOG(INFO) << "create global variable h_boot_grad";
230
    scope_->NewVar("h_boot_grad");
Y
Yan Chunwei 已提交
231 232 233 234
  }

  void CreateStepScopes() {
    std::vector<std::shared_ptr<Scope>>* step_scopes =
235
        scope_->FindVar("step_scopes")
Y
Yan Chunwei 已提交
236 237 238
            ->GetMutable<std::vector<std::shared_ptr<Scope>>>();
    for (int i = 0; i < 10; ++i) {
      auto scope = std::make_shared<Scope>(scope_);
239
      auto pre_t = scope->NewVar("rnn/pre_h")->GetMutable<Tensor>();
Y
Yan Chunwei 已提交
240
      pre_t->mutable_data<float>(make_ddim({20, 30}), platform::CPUPlace());
241
      auto tensor = scope->NewVar("rnn/h")->GetMutable<Tensor>();
Y
Yan Chunwei 已提交
242 243 244
      tensor->mutable_data<float>(make_ddim({20, 30}), platform::CPUPlace());

      // for unit test of ConcatOutputs
245
      auto xg = scope->NewVar("rnn/x_grad")->GetMutable<Tensor>();
Y
Yan Chunwei 已提交
246 247 248 249 250 251
      xg->mutable_data<float>(make_ddim({20, 30}), platform::CPUPlace());

      step_scopes->push_back(scope);
    }

    // last time step
252
    auto g = (*step_scopes)[9]->NewVar("rnn/h_pre_grad")->GetMutable<Tensor>();
Y
Yan Chunwei 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    g->mutable_data<float>(make_ddim({20, 30}), platform::CPUPlace());
  }

  void CreateRNNGradientAlgorithm() {
    std::unique_ptr<rnn::Argument> arg(new rnn::Argument());
    arg->step_net = "step_net";
    arg->step_scopes = "step_scopes";
    rnn::Link inlink;
    inlink.external = "h_grad";
    inlink.internal = "rnn/h_grad";
    arg->inlinks = std::vector<rnn::Link>{inlink};

    rnn::Link outlink;
    outlink.external = "x_grad";
    outlink.internal = "rnn/x_grad";
    arg->outlinks = std::vector<rnn::Link>{outlink};

    rnn::MemoryAttr mem_attr;
    mem_attr.pre_var = "rnn/h_pre_grad";
    mem_attr.var = "rnn/h_grad";
    mem_attr.boot_var = "h_boot_grad";
    arg->memories = std::vector<rnn::MemoryAttr>{mem_attr};

    rnn_grad_algo_.Init(std::move(arg));
  }

  void CreateStepNet() {
    LOG(INFO) << "create variable step_net";
281
    Variable* var = scope_->NewVar("step_net");
Y
Yan Chunwei 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    auto net = var->GetMutable<NetOp>();
    net->AddOp(OpRegistry::CreateOp("mul",
                                    {"rnn/h_pre", "rnn/w", "rnn/s_grad"},
                                    {"rnn/h_pre_grad", "rnn/w_grad"},
                                    {}));

    net->AddOp(OpRegistry::CreateOp(
        "add_two", {"rnn/h_grad"}, {"rnn/x_grad", "rnn/s_grad"}, {}));
    net->CompleteAddOp();
  }

  void SegmentInputs() {
    LOG(INFO) << "segment inputs";
    std::vector<std::string> inlinks = {"x"};
    std::vector<std::string> inlinks_alias = {"rnn/x"};

    rnn::Link inlink;
    inlink.external = "x";
    inlink.internal = "rnn/x";
    std::vector<std::shared_ptr<Scope>>* step_scopes =
302
        scope_->FindVar("step_scopes")
Y
Yan Chunwei 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315
            ->GetMutable<std::vector<std::shared_ptr<Scope>>>();
    rnn::SegmentInputs(*step_scopes, std::vector<rnn::Link>{inlink}, 10);
  }

  void LinkeMemories() {
    LOG(INFO) << "link memories";
    rnn::MemoryAttr mem_attr;
    mem_attr.pre_var = "rnn/h_pre";
    mem_attr.var = "rnn/h";
    mem_attr.boot_var = "boot_h";
    std::vector<rnn::MemoryAttr> memories;
    memories.push_back(mem_attr);
    std::vector<std::shared_ptr<Scope>>* step_scopes =
316
        scope_->FindVar("step_scopes")
Y
Yan Chunwei 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
            ->GetMutable<std::vector<std::shared_ptr<Scope>>>();
    for (int i = 1; i < 10; ++i) {
      rnn::LinkMemories(*step_scopes, memories, i, -1);
    }
  }

  std::shared_ptr<Scope> scope_;
  RecurrentGradientAlgorithm rnn_grad_algo_;
};

// TEST_F(RecurrentGradientAlgorithmTest, Run) {
//   platform::CPUDeviceContext ctx;
//   rnn_grad_algo_.Run(scope_, ctx);
// }

}  // namespace operators
}  // namespace paddle

TEST(RecurrentOp, LinkMemories) {
  using namespace paddle::framework;
  using namespace paddle::platform;
  using namespace paddle::operators;

  // create and init step scopes
  int len = 10;
  std::vector<std::shared_ptr<Scope>> step_scopes;
  for (int i = 0; i < len; ++i) {
    auto scope = std::make_shared<Scope>();
345 346
    scope->NewVar("pre_h");
    auto tensor = scope->NewVar("h")->GetMutable<Tensor>();
Y
Yan Chunwei 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    float* data = tensor->mutable_data<float>(make_ddim({15, 20}), CPUPlace());
    for (int i = 0; i < 15 * 20; ++i) {
      data[i] = rand() * (1. / (double)RAND_MAX);
    }
    step_scopes.push_back(scope);
  }

  // create MemoryAttr
  rnn::MemoryAttr mem_attr;
  mem_attr.pre_var = "pre_h";
  mem_attr.var = "h";
  mem_attr.boot_var = "boot_h";
  std::vector<rnn::MemoryAttr> memories;
  memories.push_back(mem_attr);

  for (int i = 1; i < len; ++i) {
    rnn::LinkMemories(step_scopes, memories, i, -1);
  }
  // check
  for (int i = 0; i < len - 1; ++i) {
    const float* a =
368
        step_scopes[i]->FindVar("h")->GetMutable<Tensor>()->data<float>();
Y
Yan Chunwei 已提交
369
    const float* b = step_scopes[i + 1]
370
                         ->FindVar("pre_h")
Y
Yan Chunwei 已提交
371 372 373 374 375 376 377 378 379 380 381 382
                         ->GetMutable<Tensor>()
                         ->data<float>();
    for (size_t i = 0; i < 15 * 20; ++i) {
      ASSERT_FLOAT_EQ(a[i], b[i]);
    }
  }

  for (int i = len - 2; i >= 0; --i) {
    rnn::LinkMemories(step_scopes, memories, i, 1);
  }
  // check
  for (int i = len - 2; i >= 0; --i) {
383 384 385 386
    const float* a =
        step_scopes[i]->FindVar("pre_h")->GetMutable<Tensor>()->data<float>();
    const float* b =
        step_scopes[i + 1]->FindVar("h")->GetMutable<Tensor>()->data<float>();
Y
Yan Chunwei 已提交
387 388 389 390 391 392 393 394
    for (size_t i = 0; i < 15 * 20; ++i) {
      ASSERT_FLOAT_EQ(a[i], b[i]);
    }
  }
}

USE_OP(add_two);
USE_OP(mul);