inferencer.py 3.9 KB
Newer Older
Y
yuyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import contextlib
P
peizhilin 已提交
18
import os
Y
yuyang 已提交
19 20 21 22 23 24

from .. import core

from .. import executor
from .. import framework
from .. import io
P
peizhilin 已提交
25 26
if os.name != 'nt':
    from .. import parallel_executor
Y
yuyang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
from .. import unique_name
from .trainer import check_and_get_place

__all__ = ['Inferencer', ]


class Inferencer(object):
    """
    Inferencer High Level API.

    Args:
        infer_func (Python func): Infer function that will return predict Variable
        param_path (str): The path where the inference model is saved by fluid.io.save_params
        place (Place): place to do the inference
        parallel (bool): use parallel_executor to run the inference, it will use multi CPU/GPU.

    Examples:
        .. code-block:: python

            def inference_program():
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                return y_predict

            place = fluid.CPUPlace()
            inferencer = fluid.Inferencer(
                infer_func=inference_program, param_path="/tmp/model", place=place)

    """

    def __init__(self, infer_func, param_path, place=None, parallel=False):
        self.param_path = param_path
        self.scope = core.Scope()
        self.parallel = parallel
        self.place = check_and_get_place(place)

        self.inference_program = framework.Program()
        with framework.program_guard(self.inference_program):
            with unique_name.guard():
                self.predict_var = infer_func()

        with self._prog_and_scope_guard():
            # load params from param_path into scope
            io.load_params(executor.Executor(self.place), param_path)

        if parallel:
            with self._prog_and_scope_guard():
                self.exe = parallel_executor.ParallelExecutor(
                    use_cuda=isinstance(self.place, core.CUDAPlace),
                    loss_name=self.predict_var.name)
        else:
            self.exe = executor.Executor(self.place)

        self.inference_program = self.inference_program.clone(for_test=True)

    def infer(self, inputs, return_numpy=True):
        """
        Do Inference for Inputs

        Args:
            inputs (map): a map of {"input_name": input_var} that will be feed into the inference program
            return_numpy (bool): transform return value into numpy or not

        Returns:
            Tensor or Numpy: the predict value of the inference model for the inputs

        Examples:
            .. code-block:: python

                tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32")
                results = inferencer.infer({'x': tensor_x})
        """
        if not isinstance(inputs, dict):
            raise ValueError(
                "inputs should be a map of {'input_name': input_var}")

        with self._prog_and_scope_guard():
            results = self.exe.run(feed=inputs,
                                   fetch_list=[self.predict_var.name],
                                   return_numpy=return_numpy)

        return results

    @contextlib.contextmanager
    def _prog_and_scope_guard(self):
        with framework.program_guard(main_program=self.inference_program):
            with executor.scope_guard(self.scope):
                yield