activation_op.cc 42.6 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
T
tink2123 已提交
16
#include <memory>
D
dzhwinter 已提交
17
#include <string>
18
#include <type_traits>
T
tink2123 已提交
19
#include <unordered_map>
20
#include <vector>
21
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
D
dzhwinter 已提交
22
#include "paddle/fluid/platform/port.h"
23 24 25
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
Q
qijun 已提交
26

A
Adam 已提交
27 28
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
29 30 31
namespace paddle {
namespace operators {

32 33
using paddle::framework::Tensor;

34 35 36 37 38
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
  return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps;
}

39 40 41 42 43
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
44 45 46 47 48
      AddInput("X", "Input of " #OP_NAME                                     \
                    " operator, an N-D Tensor, with data type float32, "     \
                    "float64 or float16.");                                  \
      AddOutput("Out", "Output of " #OP_NAME                                 \
                       " operator, a Tensor with shape same as input.");     \
49 50 51 52 53 54 55 56 57 58 59 60 61 62
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
          .SetDefault(false);                                                \
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
          .SetDefault(false);                                                \
      AddAttr<bool>(                                                         \
          "is_test",                                                         \
          "(bool, default false) Set to true for inference only, false "     \
          "for training. Some layers may run faster when this is true.")     \
          .SetDefault(false);                                                \
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
63
  }
D
dzhwinter 已提交
64

H
hong 已提交
65 66
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
67
 public:
H
hong 已提交
68
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
69 70

 protected:
71
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
72 73 74 75
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
76

A
Adam 已提交
77 78 79 80
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
        FLAGS_use_mkldnn || (op->HasAttr("use_mkldnn") &&
                             boost::get<bool>(op->GetAttr("use_mkldnn")))) {
H
hong 已提交
81
      op->SetInput("X", this->Input("X"));
82 83 84 85
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
H
hong 已提交
86
      op->SetInput("Out", this->Output("Out"));
87
    }
D
dzhwinter 已提交
88
  }
89
};
D
dzhwinter 已提交
90

91 92 93 94
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
95
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
96 97 98 99 100 101 102 103 104 105
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
106 107 108 109 110
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
111
    layout = framework::DataLayout::kMKLDNN;
112 113
  }
#endif
114 115
  return framework::OpKernelType(oper.IndicateVarDataType(ctx, name),
                                 ctx.GetPlace(), layout, library);
116 117
}

Q
qijun 已提交
118 119 120 121
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

122
  void InferShape(framework::InferShapeContext* ctx) const override {
123
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
124
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
125
  }
126

127
 protected:
128 129 130 131
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
132 133
};

C
chengduo 已提交
134 135 136 137 138 139
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
140 141 142
  }
};

Q
qijun 已提交
143 144 145 146
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

147
  void InferShape(framework::InferShapeContext* ctx) const override {
148 149 150
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
151
  }
152

153
 protected:
154 155
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
156
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
157
  }
Q
qijun 已提交
158 159
};

D
dzhwinter 已提交
160
UNUSED constexpr char SigmoidDoc[] = R"DOC(
161
Sigmoid Activation Operator
K
Kexin Zhao 已提交
162

163
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
164

D
dzhwinter 已提交
165
)DOC";
Q
qijun 已提交
166

D
dzhwinter 已提交
167
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
168
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
169

170
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
171

D
dzhwinter 已提交
172
)DOC";
173

D
dzhwinter 已提交
174
UNUSED constexpr char ExpDoc[] = R"DOC(
175
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
176

F
fengjiayi 已提交
177
$out = e^x$
K
Kexin Zhao 已提交
178

D
dzhwinter 已提交
179
)DOC";
Q
qijun 已提交
180

D
dzhwinter 已提交
181
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
182
Relu Activation Operator.
K
Kexin Zhao 已提交
183

F
fengjiayi 已提交
184
$out = \max(x, 0)$
K
Kexin Zhao 已提交
185

D
dzhwinter 已提交
186
)DOC";
K
Kexin Zhao 已提交
187

C
Clementine 已提交
188 189 190 191 192 193 194
UNUSED constexpr char GeluDoc[] = R"DOC(
Gelu Activation Operator.

$out = \\frac{1 + erf(\\frac{x}{\\sqrt{2}})}{2} x$

)DOC";

D
dzhwinter 已提交
195
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
196
Tanh Activation Operator.
K
Kexin Zhao 已提交
197

Q
update  
qiaolongfei 已提交
198
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
199

D
dzhwinter 已提交
200
)DOC";
201

D
dzhwinter 已提交
202
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
203
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
204

Y
Yan Chunwei 已提交
205
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
206

D
dzhwinter 已提交
207
)DOC";
K
Kexin Zhao 已提交
208

D
dzhwinter 已提交
209
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
210
Sqrt Activation Operator.
K
Kexin Zhao 已提交
211

212
.. math:: out=\sqrt x=x^{1/2}
213

214 215
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
216

D
dzhwinter 已提交
217
)DOC";
218

Z
zhoukunsheng 已提交
219 220 221 222 223 224 225 226 227
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

$out = \frac{1}{\sqrt{x}}$

)DOC";

D
dzhwinter 已提交
228
UNUSED constexpr char AbsDoc[] = R"DOC(
K
kexinzhao 已提交
229
Abs Activation Operator.
K
Kexin Zhao 已提交
230

F
fengjiayi 已提交
231
$out = |x|$
K
Kexin Zhao 已提交
232

D
dzhwinter 已提交
233
)DOC";
234

D
dzhwinter 已提交
235
UNUSED constexpr char CeilDoc[] = R"DOC(
236
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
237

238
$out = \left \lceil x \right \rceil$
D
dzhwinter 已提交
239

D
dzhwinter 已提交
240
)DOC";
D
dzhwinter 已提交
241

D
dzhwinter 已提交
242
UNUSED constexpr char FloorDoc[] = R"DOC(
D
dzhwinter 已提交
243 244
Floor Activation Operator.

245
$out = \left \lfloor x \right \rfloor$
D
dzhwinter 已提交
246

D
dzhwinter 已提交
247
)DOC";
D
dzhwinter 已提交
248

D
dzhwinter 已提交
249
UNUSED constexpr char CosDoc[] = R"DOC(
250
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
251 252 253

$out = cos(x)$

D
dzhwinter 已提交
254
)DOC";
C
add cos  
chengduoZH 已提交
255

D
dzhwinter 已提交
256
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
257 258 259 260
Sine Activation Operator.

$out = sin(x)$

D
dzhwinter 已提交
261
)DOC";
C
add sin  
chengduoZH 已提交
262

D
dzhwinter 已提交
263
UNUSED constexpr char RoundDoc[] = R"DOC(
264
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
265

266 267 268 269 270 271 272 273 274
.. code-block:: python

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
275

D
dzhwinter 已提交
276
)DOC";
D
dzhwinter 已提交
277

D
dzhwinter 已提交
278
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
279
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
280

281
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
282

D
dzhwinter 已提交
283
)DOC";
284

D
dzhwinter 已提交
285
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
286
Log Activation Operator.
K
Kexin Zhao 已提交
287

F
fengjiayi 已提交
288
$out = \ln(x)$
K
Kexin Zhao 已提交
289 290 291

Natural logarithm of x.

D
dzhwinter 已提交
292 293
)DOC";

D
dzhwinter 已提交
294
UNUSED constexpr char SquareDoc[] = R"DOC(
295
The OP square each elements of the inputs.
D
dzhwinter 已提交
296 297

$out = x^2$
298

D
dzhwinter 已提交
299 300
)DOC";

D
dzhwinter 已提交
301
UNUSED constexpr char SoftplusDoc[] = R"DOC(
D
dzhwinter 已提交
302 303 304 305 306 307
Softplus Activation Operator.

$out = \ln(1 + e^{x})$

)DOC";

D
dzhwinter 已提交
308
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
309 310
Softsign Activation Operator.

311
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
312 313 314

)DOC";

T
tink2123 已提交
315 316 317 318 319 320
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
321 322
Arccosine Activation Operator.

T
tink2123 已提交
323
$$out = \cos^{-1}(x)$$
324

T
tink2123 已提交
325 326 327
)DOC");
  }
};
328

T
tink2123 已提交
329 330 331 332 333 334
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of asin operator");
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
335 336
Arcsine Activation Operator.

T
tink2123 已提交
337
$$out = \sin^{-1}(x)$$
338

T
tink2123 已提交
339 340 341
)DOC");
  }
};
342

T
tink2123 已提交
343 344 345 346 347 348
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of atan operator");
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
349 350
Arctanh Activation Operator.

T
tink2123 已提交
351
$$out = \tanh^{-1}(x)$$
352

T
tink2123 已提交
353 354 355
)DOC");
  }
};
356

D
dzhwinter 已提交
357
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
358
 public:
Y
Yu Yang 已提交
359
  void Make() override {
W
Wilber 已提交
360 361 362 363 364 365 366 367
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
368 369 370 371 372 373 374
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
K
Kexin Zhao 已提交
375
    AddComment(R"DOC(
D
dzhwinter 已提交
376
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
377

W
Wilber 已提交
378
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
379 380

)DOC");
381 382 383
  }
};

D
dzhwinter 已提交
384
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
385
 public:
Y
Yu Yang 已提交
386
  void Make() override {
D
dzhwinter 已提交
387 388 389
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
390
    AddComment(R"DOC(
391 392 393
:strong:`Softshrink Activation Operator`

..  math::
394
    out = \begin{cases}
395 396 397 398
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
399 400

)DOC");
K
kexinzhao 已提交
401 402 403
  }
};

D
dzhwinter 已提交
404
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
405
 public:
Y
Yu Yang 已提交
406
  void Make() override {
D
dzhwinter 已提交
407 408
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
409 410
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
411
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
412
    AddComment(R"DOC(
Y
yuyang18 已提交
413
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
414

Y
yuyang18 已提交
415 416 417 418 419 420
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
421 422

)DOC");
423 424 425
  }
};

426 427
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
428
  void Make() override {
429 430 431 432 433 434
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
435 436 437 438
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
439
    AddComment(R"DOC(
K
kexinzhao 已提交
440
BRelu Activation Operator.
K
Kexin Zhao 已提交
441

442
$out = \min(\max(x, t_{min}), t_{max})$
K
Kexin Zhao 已提交
443 444

)DOC");
445 446 447 448 449
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
450
  void Make() override {
451
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
452
    AddOutput("Out", "Output of SoftRelu operator");
453 454
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
455
    AddComment(R"DOC(
K
kexinzhao 已提交
456
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
457

T
tensor-tang 已提交
458
$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$
K
Kexin Zhao 已提交
459 460

)DOC");
461 462 463
  }
};

464 465
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
466
  void Make() override {
467 468 469 470 471 472
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
473
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
474
    AddComment(R"DOC(
K
kexinzhao 已提交
475
ELU Activation Operator.
K
Kexin Zhao 已提交
476 477 478 479

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

F
fengjiayi 已提交
480
$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$
K
Kexin Zhao 已提交
481 482

)DOC");
483 484 485
  }
};

486 487
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
488
  void Make() override {
Z
zhupengyang 已提交
489 490 491 492 493 494 495 496
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
497
        .SetDefault(6.0f);
K
Kexin Zhao 已提交
498
    AddComment(R"DOC(
K
kexinzhao 已提交
499
Relu6 Activation Operator.
K
Kexin Zhao 已提交
500

Z
zhupengyang 已提交
501
$out = \min(\max(0, x), threshold)$
K
Kexin Zhao 已提交
502 503

)DOC");
504 505 506
  }
};

507 508
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
509
  void Make() override {
510
    AddInput("X", "Input of Pow operator");
511 512 513 514 515
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
516
    AddOutput("Out", "Output of Pow operator");
517
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
518
    AddComment(R"DOC(
K
kexinzhao 已提交
519
Pow Activation Operator.
K
Kexin Zhao 已提交
520

F
fengjiayi 已提交
521
$out = x^{factor}$
K
Kexin Zhao 已提交
522 523

)DOC");
524 525 526 527 528
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
529
  void Make() override {
530 531 532 533 534 535
    AddInput("X",
             "Input of STanh operator."
             " A LoDTensor or Tensor with type float32, float64.");
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
536 537
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
538
    AddComment(R"DOC(
K
kexinzhao 已提交
539
STanh Activation Operator.
K
Kexin Zhao 已提交
540

Y
Yan Chunwei 已提交
541
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
542 543

)DOC");
Q
qijun 已提交
544 545 546
  }
};

547 548
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
549
  void Make() override {
550
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
551
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
552 553
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
554
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
555
    AddComment(R"DOC(
Y
yuyang18 已提交
556
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
557

Y
yuyang18 已提交
558
..  math::
K
Kexin Zhao 已提交
559

Y
yuyang18 已提交
560
    out = \begin{cases}
Y
yuyang18 已提交
561
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
562 563
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
564
)DOC");
565 566 567
  }
};

568 569
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
570
  void Make() override {
571 572 573 574 575
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
576
        .SetDefault(0.2f);
577 578 579
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
580
        .SetDefault(0.5f);
581
    AddComment(R"DOC(
K
kexinzhao 已提交
582
HardSigmoid Activation Operator.
583

584
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
585
which is much faster than sigmoid.
586

587
$out = \max(0, \min(1, slope * x + offset))$
588

K
Kexin Zhao 已提交
589
)DOC");
590 591 592
  }
};

A
Abhinav Arora 已提交
593 594
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
595
  void Make() override {
A
Abhinav Arora 已提交
596
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
597
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
598 599 600 601
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
    AddComment(R"DOC(
Swish Activation Operator.

602
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
603 604 605 606 607

)DOC");
  }
};

H
huangjun12 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
634 635 636 637
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
C
Clementine 已提交
638
REGISTER_ACTIVATION_OP_MAKER(Gelu, GeluDoc);
D
dzhwinter 已提交
639 640 641
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
642
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
643 644 645 646 647 648 649 650 651 652 653 654
REGISTER_ACTIVATION_OP_MAKER(Abs, AbsDoc);
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softplus, SoftplusDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

655
template <ActBwdOpFwdDeps kDepValue>
656 657 658 659 660
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
661
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
662
      if (ctx->HasOutput("DX")) {
663 664 665
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
666
      if (ctx->HasOutput("DDOut")) {
667 668 669
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
670
    }
671
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
672
      if (ctx->HasOutput("DOut")) {
673 674 675
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("DDOut")) {
704 705 706
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
707 708 709 710 711 712 713 714 715 716
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

717 718 719 720
//
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
//
H
hong 已提交
721 722
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
723
 public:
H
hong 已提交
724
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
725 726

 protected:
727
  void Apply(GradOpPtr<T> op) const override {
728 729
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
730
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
731
    // input2: ddx
H
hong 已提交
732 733
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
734
    // output: ddy
H
hong 已提交
735
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
736 737 738
  }
};

739 740
// leaky_relu Grad: dx=dy if y>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if y>=0 else alpha * ddx
H
hong 已提交
741
template <typename T>
742
class LeakyReluDoubleGradMaker
H
hong 已提交
743
    : public ::paddle::framework::SingleGradOpMaker<T> {
744
 public:
H
hong 已提交
745
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
746 747

 protected:
748
  void Apply(GradOpPtr<T> op) const override {
749
    op->SetType("leaky_relu_grad_grad");
Z
Zeng Jinle 已提交
750
    // input1: Out
H
hong 已提交
751
    op->SetInput("Out", this->Input("Out"));
752
    // X@GRAD@GRAD: ddx
H
hong 已提交
753 754
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
755
    // Out@GRAD@GRAD: ddy
H
hong 已提交
756
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
757 758 759
  }
};

D
Double_V 已提交
760 761 762 763 764 765 766 767
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
768
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
783 784
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
785 786
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
787
 public:
H
hong 已提交
788
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
789 790

 protected:
791
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
792
    op->SetType("sqrt_grad_grad");
H
hong 已提交
793 794 795 796 797 798
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
799 800 801
  }
};

802 803
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
804 805
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
806
 public:
H
hong 已提交
807
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
808 809

 protected:
810
  void Apply(GradOpPtr<T> op) const override {
811
    op->SetType("square_grad_grad");
H
hong 已提交
812
    op->SetInput("X", this->Input("X"));
813
    // Out@GRAD: dy
H
hong 已提交
814
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
815
    // X@GRAD@GRAD: ddx
H
hong 已提交
816
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
817

H
hong 已提交
818
    op->SetAttrMap(this->Attrs());
819 820

    // X@GRAD: dx
H
hong 已提交
821
    op->SetOutput("DX", this->InputGrad("X"));
822
    // Out@GRAD@GRAD: ddy
H
hong 已提交
823
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
824 825 826
  }
};

827 828 829
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInference,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
830 831
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInference,
                           {"DDX", "DDOut"});
832

H
hong 已提交
833 834
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
835
 public:
H
hong 已提交
836
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
837 838

 protected:
839
  void Apply(GradOpPtr<T> op) const override {
840
    op->SetType("pow_grad");
H
hong 已提交
841 842 843 844 845
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};
900
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
901 902 903 904
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
905
namespace plat = paddle::platform;
906

907 908 909 910
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
      KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker,                \
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
911 912 913 914
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
915
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
916
                       ops::ActFwdInplaceInferer, void>::type);             \
917 918
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad,              \
                    ops::ActivationGradOpInplaceInference);
919 920 921

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor,        \
                                       grad_functor)                      \
Q
QI JUN 已提交
922 923 924 925 926 927 928 929 930 931
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
932
                                ops::grad_functor<double>>);
933

934 935
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
936

937
/* ==========================    relu register  ============================= */
938 939
REGISTER_OPERATOR(
    relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
940 941 942 943
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
944
    ops::ActFwdInplaceInferer);
945
REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad,
946
                  ops::ActivationGradOpInplaceInference,
H
hong 已提交
947 948
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
949 950
REGISTER_OPERATOR(
    relu_grad_grad,
951 952
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);
953 954 955 956 957 958 959 960 961 962 963

REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluFunctor, ReluGradFunctor);

REGISTER_OP_CPU_KERNEL(
    relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<plat::float16>>);
964
/* ========================================================================== */
965

966
/* ======================== leaky relu register  ============================ */
967 968 969
REGISTER_OPERATOR(
    leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
970 971 972 973
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
974
    ops::ActFwdInplaceInferer);
975
REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad,
976
                  ops::ActivationGradOpInplaceInference,
H
hong 已提交
977 978
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
979 980
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
981 982
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);
983

984 985 986 987 988 989 990 991 992 993
REGISTER_ACTIVATION_CPU_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor,
                               LeakyReluGradFunctor);
REGISTER_OP_CPU_KERNEL(
    leaky_relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<
        plat::CPUDeviceContext, ops::LeakyReluGradGradFunctor<plat::float16>>);
994 995
/* ========================================================================== */

D
Double_V 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
/* ========================    elu  register     ============================ */
REGISTER_OPERATOR(
    elu, ops::ActivationOp, ops::ELUOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(elu_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInference,
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);

REGISTER_ACTIVATION_CPU_KERNEL(elu, ELU, ELUFunctor, ELUGradFunctor);
REGISTER_OP_CPU_KERNEL(
    elu_grad_grad, ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::ELUGradGradFunctor<float>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<double>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

L
lvmengsi 已提交
1024 1025 1026
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
    sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1027 1028 1029 1030
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1031
    ops::ActFwdInplaceInferer);
L
lvmengsi 已提交
1032
REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad,
1033
                  ops::ActivationGradOpInplaceInference,
H
hong 已提交
1034 1035
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1036 1037
REGISTER_OPERATOR(
    sqrt_grad_grad,
1038 1039 1040
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);

L
lvmengsi 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    sqrt_grad_grad, ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1051 1052 1053 1054
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
    square, ops::ActivationOp, ops::SquareOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1055 1056 1057 1058
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1059
    ops::ActFwdInplaceInferer);
1060
REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad,
1061
                  ops::ActivationGradOpInplaceInference,
H
hong 已提交
1062 1063
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1064 1065
REGISTER_OPERATOR(
    square_grad_grad,
1066 1067
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);
1068

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
REGISTER_OP_CPU_KERNEL(square,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    square_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           ops::SquareGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int64_t>>);
1087 1088 1089 1090 1091 1092 1093 1094

REGISTER_OP_CPU_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
1095 1096 1097 1098 1099
                                ops::SquareGradGradFunctor<plat::float16>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1100
/* ========================================================================== */
1101 1102 1103 1104 1105

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
    pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1106 1107
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1108
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1109
                     ops::ActFwdInplaceInferer, void>::type);
1110 1111 1112 1113 1114
REGISTER_OPERATOR(pow_grad, ops::PowOpGrad,
                  ops::ActivationGradOpInplaceInference);

REGISTER_OP_CPU_KERNEL(
    pow, ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<float>>,
1115 1116 1117
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<double>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int64_t>>);
1118 1119 1120
REGISTER_OP_CPU_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<float>>,
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<double>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
    exp, ops::ActivationOp, ops::ExpOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(exp_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInference);

REGISTER_OP_CPU_KERNEL(exp,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    exp_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::ExpGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   abs register  ============================ */
REGISTER_OPERATOR(
    abs, ops::ActivationOp, ops::AbsOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::AbsGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(abs_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInference);

REGISTER_OP_CPU_KERNEL(abs,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    abs_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::AbsGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int64_t>>);
1188
/* ========================================================================== */