fused_attention_op.cc 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class FusedAttentionOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("SrcMask"), "Input", "SrcMask",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("QKVW"), "Input", "QKVW", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("QKVBias"), "Input", "QKVBias",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("OutLinearW"), "Input", "OutLinearW",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("OutLinearBias"), "Input", "OutLinearBias",
                   "FusedAttentionOp");

    OP_INOUT_CHECK(ctx->HasOutput("LnMean"), "Output", "LnMean",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("LnVariance"), "Output", "LnVariance",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("LnOut"), "Output", "LnOut",
                   "FusedAttentionOp");
    // qkv_out: [batch_size, seq_len, 3, num_head, dim_head]
    OP_INOUT_CHECK(ctx->HasOutput("QKVOut"), "Output", "QKVOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("QKVBiasOut"), "Output", "QKVBiasOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("TransposeOut2"), "Output", "TransposeOut2",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("QKOut"), "Output", "QKOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("QKTVOut"), "Output", "QKTVOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("SrcMaskOut"), "Output", "SrcMaskOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("SoftmaxOut"), "Output", "SoftmaxOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("AttnDropoutMaskOut"), "Output",
                   "AttnDropoutMaskOut", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("AttnDropoutOut"), "Output", "AttnDropoutOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("FMHAOut"), "Output", "FMHAOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("OutLinearOut"), "Output", "OutLinearOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("Ln2Mean"), "Output", "Ln2Mean",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("Ln2Variance"), "Output", "Ln2Variance",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("BiasDropoutResidualOut"), "Output",
                   "BiasDropoutResidualOut", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("DropoutMaskOut"), "Output", "DropoutMaskOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "FusedAttentionOp");

    // x: qkv's input [batch_size, seq_len, dim_embed]
    // y: qkv's weight: [3, num_head, dim_head, dim_embed]
    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("QKVW");
    PADDLE_ENFORCE_EQ(x_dim.size(), 3, platform::errors::InvalidArgument(
                                           "The dimensions of x must be 3"
                                           "(batch_size, seq_len, dim_embed),"
                                           "but received dimensions of"
                                           "Input is [%d]",
                                           x_dim.size()));
    PADDLE_ENFORCE_EQ(y_dim.size(), 4,
                      platform::errors::InvalidArgument(
                          "The dimensions of qkv_weight must be 4"
                          "(3, num_head, dim_head, dim_embed),"
                          "but received dimensions of"
                          "Input is [%d]",
                          y_dim.size()));
    PADDLE_ENFORCE_EQ(x_dim[2], y_dim[3],
                      platform::errors::InvalidArgument(
                          "ShapeError: the dimension of x_dim[2] and y_dim[3]"
                          "must be equal. But received: the shape "
                          "of input x = [%s], and the shape of "
                          "input qkv_weight = [%s]",
                          x_dim, y_dim));

    ctx->SetOutputDim("LnMean", {x_dim[0] * x_dim[1]});
    ctx->SetOutputDim("LnVariance", {x_dim[0] * x_dim[1]});
    ctx->SetOutputDim("LnOut", ctx->GetInputDim("X"));
    // [batch_size, seq_len, 3, num_head, head_size]
    ctx->SetOutputDim("QKVOut",
                      {x_dim[0], x_dim[1], y_dim[0], y_dim[1], y_dim[2]});
    ctx->SetOutputDim("QKVBiasOut",
                      {x_dim[0], x_dim[1], y_dim[0], y_dim[1], y_dim[2]});
    // [3, batch_size, num_head, seq_len, head_size]
    ctx->SetOutputDim("TransposeOut2",
                      {y_dim[0], x_dim[0], y_dim[1], x_dim[1], y_dim[2]});
    // [batch, num_head, seq_len, seq_len]
    ctx->SetOutputDim("QKOut", {x_dim[0], y_dim[1], x_dim[1], x_dim[1]});
    ctx->SetOutputDim("SrcMaskOut", {x_dim[0], y_dim[1], x_dim[1], x_dim[1]});
    // the same as QKOut's shape.
    ctx->SetOutputDim("AttnDropoutOut",
                      {x_dim[0], y_dim[1], x_dim[1], x_dim[1]});
    if (ctx->Attrs().Get<bool>("attn_dropout_is_test") == false) {
      ctx->SetOutputDim("AttnDropoutMaskOut",
                        {x_dim[0], y_dim[1], x_dim[1], x_dim[1]});
    }
    ctx->SetOutputDim("SoftmaxOut", {x_dim[0], y_dim[1], x_dim[1], x_dim[1]});
    // [batch_size, num_heads, seq_len, head_dim]
    ctx->SetOutputDim("QKTVOut", {x_dim[0], y_dim[1], x_dim[1], y_dim[2]});
    // [batch_size, seq_len, number of heads*head size]
    ctx->SetOutputDim("FMHAOut", {x_dim[0], x_dim[1], y_dim[1], y_dim[2]});
    ctx->SetOutputDim("OutLinearOut", ctx->GetInputDim("X"));

    ctx->SetOutputDim("Ln2Mean", {x_dim[0] * x_dim[1]});
    ctx->SetOutputDim("Ln2Variance", {x_dim[0] * x_dim[1]});
    if (ctx->Attrs().Get<bool>("dropout_is_test") == false) {
      ctx->SetOutputDim("DropoutMaskOut", ctx->GetInputDim("X"));
    }
    ctx->SetOutputDim("BiasDropoutResidualOut", ctx->GetInputDim("X"));
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input = ctx.Input<Tensor>("X");
    auto input_data_type = input->type();
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class FusedAttentionOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor.");
    AddInput("LnScale",
             "(optional) Scale is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("LnBias",
             "(optional) Bias is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("QKVW", "The qkv weight tensor.");
    AddInput("QKVBias", "The qkv bias tensor.");
    AddInput("SrcMask", "(optional) The attention mask tensor in fmha.")
        .AsDispensable();
    AddInput("OutLinearW", "The out_linear weight tensor.");
    AddInput("OutLinearBias", "The out_linear bias tensor.");
    AddInput("Ln2Scale",
             "(optional) Scale is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("Ln2Bias",
             "(optional) Bias is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddOutput("LnMean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("LnVariance", "Variance of the current mini batch.")
        .AsIntermediate();
    AddOutput("LnOut", "The output of pre layer_norm.").AsIntermediate();
    AddOutput("QKVOut", "Result after qkv.").AsIntermediate();
    AddOutput("QKVBiasOut", "Result after qkv and bias op.").AsIntermediate();
    AddOutput("TransposeOut2", "Result in fmha.").AsIntermediate();
    AddOutput("QKOut", "Result in fmha.").AsIntermediate();
    AddOutput("QKTVOut", "Result in fmha.").AsIntermediate();
    AddOutput("SoftmaxOut", "Result in fmha.").AsIntermediate();
    AddOutput("AttnDropoutMaskOut", "Result in fmha.").AsIntermediate();
    AddOutput("AttnDropoutOut", "Result in fmha.").AsIntermediate();
    AddOutput("SrcMaskOut", "Result in fmha.").AsIntermediate();
    AddOutput("FMHAOut", "Result after fmha.").AsIntermediate();
    AddOutput("OutLinearOut", "Result after out_linear.").AsIntermediate();
    AddOutput("DropoutMaskOut", "The random sampled dropout mask.")
        .AsIntermediate();
    AddOutput("Ln2Mean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("Ln2Variance", "Variance of the current mini batch.")
        .AsIntermediate();
    AddOutput("BiasDropoutResidualOut",
              "Result of residual + dropout(src + bias).")
        .AsIntermediate();
    AddOutput("Y", "Result after attention.");

    AddAttr<bool>("pre_layer_norm",
                  "if true, the attention op uses pre_layer_norm architecure, "
                  "else, uses post_layer_norm architecuture. "
                  "[default false].")
        .SetDefault(false);
    AddAttr<float>("epsilon",
                   "Constant for numerical stability [default 1e-5].")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' in Op(LayerNorm) should be between"
                                "0.0 and 0.001, But received [%s].",
                                epsilon));
        });

    // for dropout in fmha.
    AddAttr<float>("attn_dropout_rate", "Probability of setting units to zero.")
        .SetDefault(.5f)
        .AddCustomChecker([](const float &drop_p) {
          PADDLE_ENFORCE_EQ(
              drop_p >= 0.0f && drop_p <= 1.0f, true,
              platform::errors::InvalidArgument(
                  "'attn_dropout_rate' must be between 0.0 and 1.0."));
        });
    AddAttr<bool>("attn_dropout_is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddAttr<bool>("attn_dropout_fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(true);
    AddAttr<int>("attn_dropout_seed", "Dropout random seed.").SetDefault(0);
    AddAttr<std::string>(
        "attn_dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "There are two kinds of ways to implement dropout"
        "(the mask below is a tensor have the same shape with input"
        "the value of mask is 0 or 1, the ratio of 0 is dropout_rate)"
        "1. downgrade_in_infer(default), downgrade the outcome at inference "
        "time"
        "   train: out = input * mask"
        "   inference: out = input * (1.0 - dropout_rate)"
        "2. upscale_in_train, upscale the outcome at training time, do nothing "
        "in inference"
        "   train: out = input * mask / ( 1.0 - dropout_rate )"
        "   inference: out = input"
        "   dropout op can be removed from the program. the program will be "
        "efficient")
        .SetDefault("upscale_in_train")
        .AddCustomChecker([](const std::string &type) {
          PADDLE_ENFORCE_EQ(
              type == "downgrade_in_infer" || type == "upscale_in_train", true,
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
        });

    AddAttr<float>("dropout_rate", "Probability of setting units to zero.")
        .SetDefault(.5f)
        .AddCustomChecker([](const float &drop_p) {
          PADDLE_ENFORCE_EQ(drop_p >= 0.0f && drop_p <= 1.0f, true,
                            platform::errors::InvalidArgument(
                                "'dropout_rate' must be between 0.0 and 1.0."));
        });

    AddAttr<bool>("dropout_is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddAttr<bool>("dropout_fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(true);
    AddAttr<int>("dropout_seed", "Dropout random seed.").SetDefault(0);
    AddAttr<std::string>(
        "dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "The meaning is the same as 'attn_dropout_implementation'.")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string &type) {
          PADDLE_ENFORCE_EQ(
              type == "downgrade_in_infer" || type == "upscale_in_train", true,
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
        });
    AddAttr<float>("ln_epsilon",
                   "Constant for numerical stability [default 1e-5].")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &ln_epsilon) {
          PADDLE_ENFORCE_EQ(ln_epsilon >= 0.0f && ln_epsilon <= 0.001f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' of the second LayerNorm in Fused "
                                "attention op should be between"
                                "0.0 and 0.001, But received [%s].",
                                ln_epsilon));
        });

    AddComment(R"DOC(
    	Add fused attention op whose logic is as follows:
        // @input: [batch_size, seq_len, 3, num_head, head_dim] 
        // @final_out: [batch_size, seq_len, num_heads, head_dim] 
   	if (pre_layernorm)
    	    out = layer_norm(input);
	out = compute_qkv(out) + bias;
	// fmha module
	{
            out = transpose(out, perm=[2, 0, 3, 1, 4]);
            out = q * k^t;
            out = attn_mark + out;
            out = softmax(out);
            out = dropout(out);
            out = out * v;
            out = transpose(out, perm=[0, 2, 1, 3]);
                
        }
	out = out_linear(out);
	final_out = layer_norm(residual + dropout(bias + out));
    )DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fused_attention, ops::FusedAttentionOp,
                  ops::FusedAttentionOpMaker);