tensor_py.h 7.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
Q
qijun 已提交
16
#include <string>
Y
Yi Wang 已提交
17 18 19
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/device_context.h"
20
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
21 22
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
23 24 25 26 27

namespace py = pybind11;

namespace paddle {

28
namespace pybind {
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

namespace details {

template <bool less, size_t I, typename... ARGS>
struct CastToPyBufferImpl;

template <size_t I, typename... ARGS>
struct CastToPyBufferImpl<false, I, ARGS...> {
  py::buffer_info operator()(framework::Tensor &tensor) {
    PADDLE_THROW("This type of tensor cannot be expose to Python");
    return py::buffer_info();
  }
};

template <size_t I, typename... ARGS>
struct CastToPyBufferImpl<true, I, ARGS...> {
  using CUR_TYPE = typename std::tuple_element<I, std::tuple<ARGS...>>::type;
  py::buffer_info operator()(framework::Tensor &tensor) {
Y
Yu Yang 已提交
47
    if (std::type_index(typeid(CUR_TYPE)) == tensor.type()) {
48 49 50 51 52 53 54 55 56 57 58 59
      auto dim_vec = framework::vectorize(tensor.dims());
      std::vector<size_t> dims_outside;
      std::vector<size_t> strides;
      dims_outside.resize(dim_vec.size());
      strides.resize(dim_vec.size());

      size_t prod = 1;
      for (size_t i = dim_vec.size(); i != 0; --i) {
        dims_outside[i - 1] = (size_t)dim_vec[i - 1];
        strides[i - 1] = sizeof(CUR_TYPE) * prod;
        prod *= dims_outside[i - 1];
      }
Q
qijun 已提交
60
      framework::Tensor dst_tensor;
Y
Yu Yang 已提交
61
      if (paddle::platform::is_gpu_place(tensor.place())) {
62 63 64 65
#ifdef PADDLE_WITH_CUDA
        auto *src_ptr = static_cast<const void *>(tensor.data<CUR_TYPE>());
        auto *dst_ptr = static_cast<void *>(dst_tensor.mutable_data<CUR_TYPE>(
            tensor.dims(), platform::CPUPlace()));
D
dzhwinter 已提交
66

Y
Yang Yu 已提交
67
        platform::DeviceContextPool &pool =
Y
Yang Yu 已提交
68
            platform::DeviceContextPool::Instance();
D
dzhwinter 已提交
69
        auto dev_ctx = static_cast<const platform::CUDADeviceContext *>(
Y
Yang Yu 已提交
70
            pool.Get(tensor.place()));
D
dzhwinter 已提交
71 72 73 74

        paddle::platform::GpuMemcpyAsync(
            dst_ptr, src_ptr, sizeof(CUR_TYPE) * tensor.numel(),
            cudaMemcpyDeviceToHost, dev_ctx->stream());
75
#else
D
dzhwinter 已提交
76
        PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
77
#endif
Y
Yu Yang 已提交
78
      } else if (paddle::platform::is_cpu_place(tensor.place())) {
Q
qijun 已提交
79 80
        dst_tensor = tensor;
      }
81 82 83 84 85 86 87 88 89 90 91 92 93

      if (std::type_index(typeid(CUR_TYPE)) ==
          std::type_index(typeid(platform::float16))) {
        return py::buffer_info(dst_tensor.data<CUR_TYPE>(), sizeof(CUR_TYPE),
                               "e", /* np.dtype('e') == np.float16 */
                               (size_t)framework::arity(dst_tensor.dims()),
                               dims_outside, strides);
      } else {
        return py::buffer_info(dst_tensor.data<CUR_TYPE>(), sizeof(CUR_TYPE),
                               py::format_descriptor<CUR_TYPE>::format(),
                               (size_t)framework::arity(dst_tensor.dims()),
                               dims_outside, strides);
      }
94 95 96 97 98 99
    } else {
      constexpr bool less = I + 1 < std::tuple_size<std::tuple<ARGS...>>::value;
      return CastToPyBufferImpl<less, I + 1, ARGS...>()(tensor);
    }
  }
};
100

101
}  // namespace details
102

103
inline py::buffer_info CastToPyBuffer(framework::Tensor &tensor) {
104
  auto buffer_info =
105 106
      details::CastToPyBufferImpl<true, 0, float, int, double, int64_t, bool,
                                  platform::float16>()(tensor);
107 108 109
  return buffer_info;
}

110 111
template <typename T>
T TensorGetElement(framework::Tensor &self, size_t offset) {
112 113 114 115
  if (platform::is_cpu_place(self.place())) {
    return self.data<T>()[offset];
  } else {
    std::shared_ptr<framework::Tensor> dst(new framework::Tensor);
Y
Yi Wang 已提交
116
    framework::TensorCopy(self, platform::CPUPlace(), dst.get());
117 118
    return dst->data<T>()[offset];
  }
119 120
}

121
// TODO(dzhwinter) : fix the redundent Tensor allocate and free
122 123
template <typename T>
void TensorSetElement(framework::Tensor &self, size_t offset, T elem) {
124 125
  if (platform::is_gpu_place(self.place())) {
    std::shared_ptr<framework::Tensor> dst(new framework::Tensor);
Y
Yi Wang 已提交
126
    framework::TensorCopy(self, platform::CPUPlace(), dst.get());
127
    dst->data<T>()[offset] = elem;
Y
Yi Wang 已提交
128
    framework::TensorCopy(*dst.get(), self.place(), &self);
129 130 131 132

  } else if (platform::is_cpu_place(self.place())) {
    self.data<T>()[offset] = elem;
  }
133 134
}

135
template <typename T>
Q
qijun 已提交
136
void PyCPUTensorSetFromArray(
137
    framework::Tensor &self,
Q
qijun 已提交
138 139
    py::array_t<T, py::array::c_style | py::array::forcecast> array,
    paddle::platform::CPUPlace &place) {
Q
qijun 已提交
140
  std::vector<int64_t> dims;
141 142 143 144 145
  dims.reserve(array.ndim());
  for (size_t i = 0; i < array.ndim(); ++i) {
    dims.push_back((int)array.shape()[i]);
  }

F
fengjiayi 已提交
146
  self.Resize(framework::make_ddim(dims));
Q
qijun 已提交
147
  auto *dst = self.mutable_data<T>(place);
148 149 150
  std::memcpy(dst, array.data(), sizeof(T) * array.size());
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
template <>
void PyCPUTensorSetFromArray(
    framework::Tensor &self,
    py::array_t<uint16_t, py::array::c_style | py::array::forcecast> array,
    paddle::platform::CPUPlace &place) {
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  for (size_t i = 0; i < array.ndim(); ++i) {
    dims.push_back((int)array.shape()[i]);
  }

  self.Resize(framework::make_ddim(dims));
  auto *dst = self.mutable_data<platform::float16>(place);
  std::memcpy(dst, array.data(), sizeof(uint16_t) * array.size());
}

167
#ifdef PADDLE_WITH_CUDA
Q
qijun 已提交
168 169 170 171
template <typename T>
void PyCUDATensorSetFromArray(
    framework::Tensor &self,
    py::array_t<T, py::array::c_style | py::array::forcecast> array,
D
dzhwinter 已提交
172
    paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
173
  std::vector<int64_t> dims;
Q
qijun 已提交
174 175 176
  dims.reserve(array.ndim());
  for (size_t i = 0; i < array.ndim(); ++i) {
    dims.push_back((int)array.shape()[i]);
Q
qijun 已提交
177
  }
Q
qijun 已提交
178 179 180

  self.Resize(framework::make_ddim(dims));
  auto *dst = self.mutable_data<T>(place);
D
dzhwinter 已提交
181

Y
Yang Yu 已提交
182
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
D
dzhwinter 已提交
183
  auto dev_ctx =
Y
Yang Yu 已提交
184
      static_cast<const platform::CUDADeviceContext *>(pool.Get(place));
D
dzhwinter 已提交
185 186
  paddle::platform::GpuMemcpyAsync(dst, array.data(), sizeof(T) * array.size(),
                                   cudaMemcpyHostToDevice, dev_ctx->stream());
187
}
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

template <>
void PyCUDATensorSetFromArray(
    framework::Tensor &self,
    py::array_t<uint16_t, py::array::c_style | py::array::forcecast> array,
    paddle::platform::CUDAPlace &place) {
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  for (size_t i = 0; i < array.ndim(); ++i) {
    dims.push_back((int)array.shape()[i]);
  }

  self.Resize(framework::make_ddim(dims));
  auto *dst = self.mutable_data<platform::float16>(place);

  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto dev_ctx =
      static_cast<const platform::CUDADeviceContext *>(pool.Get(place));
  paddle::platform::GpuMemcpyAsync(dst, array.data(),
                                   sizeof(uint16_t) * array.size(),
                                   cudaMemcpyHostToDevice, dev_ctx->stream());
}
Q
qijun 已提交
210
#endif
211 212 213

}  // namespace pybind
}  // namespace paddle