arg_min_max_op_base.h 7.6 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
yuyang18 已提交
16
#include <string>
S
sneaxiy 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#include <type_traits>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/string/printf.h"

namespace paddle {
namespace operators {

enum ArgMinMaxType { kArgMin, kArgMax };

template <typename DeviceContext, typename T, typename Tout, int64_t Rank,
          ArgMinMaxType argMinMaxValue>
struct ArgMinMaxFunctor {};

#define DECLARE_ARG_MIN_MAX_FUNCTOR(eigen_op_type, enum_argminmax_value)      \
  template <typename DeviceContext, typename T, typename Tout, int64_t Rank>  \
  struct ArgMinMaxFunctor<DeviceContext, T, Tout, Rank,                       \
                          enum_argminmax_value> {                             \
    void operator()(const DeviceContext& ctx, const framework::LoDTensor& in, \
41
                    framework::LoDTensor* out, int64_t axis, bool keepdims) { \
S
sneaxiy 已提交
42
      auto in_eigen = framework::EigenTensor<T, Rank>::From(in);              \
43 44 45 46 47 48 49 50 51
      if (keepdims) {                                                         \
        auto out_eigen = framework::EigenTensor<Tout, Rank>::From(*out);      \
        out_eigen.device(*(ctx.eigen_device())) =                             \
            in_eigen.eigen_op_type(axis).template cast<Tout>();               \
      } else {                                                                \
        auto out_eigen = framework::EigenTensor<Tout, Rank - 1>::From(*out);  \
        out_eigen.device(*(ctx.eigen_device())) =                             \
            in_eigen.eigen_op_type(axis).template cast<Tout>();               \
      }                                                                       \
S
sneaxiy 已提交
52 53 54 55 56 57
    }                                                                         \
  }

DECLARE_ARG_MIN_MAX_FUNCTOR(argmin, ArgMinMaxType::kArgMin);
DECLARE_ARG_MIN_MAX_FUNCTOR(argmax, ArgMinMaxType::kArgMax);

58 59 60 61 62 63 64 65
template <typename DeviceContext, typename T, ArgMinMaxType EnumArgMinMaxValue>
struct VisitDataArgMinMaxFunctor {
  const framework::ExecutionContext& ctx;

  explicit VisitDataArgMinMaxFunctor(const framework::ExecutionContext& ctx)
      : ctx(ctx) {}
  template <typename Tout>
  void apply() const {
S
sneaxiy 已提交
66 67
    auto& x = *(ctx.Input<framework::LoDTensor>("X"));
    auto& out = *(ctx.Output<framework::LoDTensor>("Out"));
68
    out.template mutable_data<Tout>(ctx.GetPlace());
S
sneaxiy 已提交
69
    auto axis = ctx.Attr<int64_t>("axis");
70
    auto keepdims = ctx.Attr<bool>("keepdims");
C
chengduo 已提交
71 72
    auto x_rank = x.dims().size();
    if (axis < 0) axis += x_rank;
S
sneaxiy 已提交
73 74 75 76 77
    auto& dev_ctx = ctx.template device_context<DeviceContext>();

#define CALL_ARG_MINMAX_FUNCTOR(rank)                                \
  ArgMinMaxFunctor<DeviceContext, T, Tout, rank, EnumArgMinMaxValue> \
      functor##rank;                                                 \
78
  functor##rank(dev_ctx, x, &out, axis, keepdims)
S
sneaxiy 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

    switch (x.dims().size()) {
      case 1:
        CALL_ARG_MINMAX_FUNCTOR(1);
        break;
      case 2:
        CALL_ARG_MINMAX_FUNCTOR(2);
        break;
      case 3:
        CALL_ARG_MINMAX_FUNCTOR(3);
        break;
      case 4:
        CALL_ARG_MINMAX_FUNCTOR(4);
        break;
      case 5:
        CALL_ARG_MINMAX_FUNCTOR(5);
        break;
      case 6:
        CALL_ARG_MINMAX_FUNCTOR(6);
        break;
      default:
        PADDLE_THROW(
            "%s operator doesn't supports tensors whose ranks are greater "
            "than 6.",
            (EnumArgMinMaxValue == kArgMin ? "argmin" : "argmax"));
        break;
Y
yuyang18 已提交
105
#undef CALL_ARG_MINMAX_FUNCTOR
S
sneaxiy 已提交
106 107 108 109
    }
  }
};

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
template <typename DeviceContext, typename T, ArgMinMaxType EnumArgMinMaxValue>
class ArgMinMaxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dtype = ctx.Attr<int>("dtype");
    if (dtype < 0) {
      framework::VisitDataType(
          static_cast<framework::proto::VarType::Type>(
              framework::proto::VarType::INT64),
          VisitDataArgMinMaxFunctor<DeviceContext, T, EnumArgMinMaxValue>(ctx));
      return;
    }
    framework::VisitDataType(
        static_cast<framework::proto::VarType::Type>(dtype),
        VisitDataArgMinMaxFunctor<DeviceContext, T, EnumArgMinMaxValue>(ctx));
  }
};

Y
yuyang18 已提交
128
template <typename DeviceContext, typename T>
129
using ArgMinKernel = ArgMinMaxKernel<DeviceContext, T, ArgMinMaxType::kArgMin>;
S
sneaxiy 已提交
130

Y
yuyang18 已提交
131
template <typename DeviceContext, typename T>
132
using ArgMaxKernel = ArgMinMaxKernel<DeviceContext, T, ArgMinMaxType::kArgMax>;
S
sneaxiy 已提交
133

Y
yuyang18 已提交
134
class ArgMinMaxOp : public framework::OperatorWithKernel {
S
sneaxiy 已提交
135 136 137 138
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
139 140
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "arg_min_max");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "arg_min_max");
S
sneaxiy 已提交
141 142
    const auto& x_dims = ctx->GetInputDim("X");
    int64_t axis = ctx->Attrs().Get<int64_t>("axis");
143 144
    bool keepdims = ctx->Attrs().Get<bool>("keepdims");

145 146 147 148 149 150 151 152 153
    PADDLE_ENFORCE_GE(axis, -x_dims.size(),
                      platform::errors::InvalidArgument(
                          "'axis'(%d) must be greater than or equal to"
                          " -Rank(X)(%d).",
                          axis, -x_dims.size()));
    PADDLE_ENFORCE_LT(
        axis, x_dims.size(),
        platform::errors::InvalidArgument(
            "'axis'(%d) must be less than Rank(X)(%d).", axis, x_dims.size()));
S
sneaxiy 已提交
154 155 156 157 158

    auto x_rank = x_dims.size();
    if (axis < 0) axis += x_rank;
    std::vector<int64_t> vec;
    for (int64_t i = 0; i < axis; i++) vec.push_back(x_dims[i]);
159 160 161
    if (keepdims) {
      vec.push_back(static_cast<int64_t>(1));
    }
S
sneaxiy 已提交
162 163 164
    for (int64_t i = axis + 1; i < x_rank; i++) vec.push_back(x_dims[i]);
    ctx->SetOutputDim("Out", framework::make_ddim(vec));
  }
Y
yuyang18 已提交
165
};
S
sneaxiy 已提交
166 167 168 169 170 171 172 173 174 175 176

class BaseArgMinMaxOpMaker : public framework::OpProtoAndCheckerMaker {
 protected:
  virtual const char* OpName() const = 0;
  virtual const char* Name() const = 0;

 public:
  void Make() override {
    AddInput("X", "Input tensor.");
    AddOutput("Out", "Output tensor.");
    AddAttr<int64_t>("axis", "The axis in which to compute the arg indics.");
177 178
    AddAttr<bool>("keepdims", "Keep the dim that to reduce.").SetDefault(false);
    AddAttr<int>("dtype", "Keep the dim that to reduce.").SetDefault(-1);
Y
yuyang18 已提交
179 180
    AddComment(string::Sprintf(R"DOC(
      %s Operator.
S
sneaxiy 已提交
181

Y
yuyang18 已提交
182 183
      Computes the indices of the %s elements of the input tensor's element
      along the provided axis.
S
sneaxiy 已提交
184
)DOC",
Y
yuyang18 已提交
185
                               OpName(), Name()));
S
sneaxiy 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  }
};

class ArgMinOpMaker : public BaseArgMinMaxOpMaker {
 protected:
  const char* OpName() const override { return "ArgMin"; }
  const char* Name() const override { return "min"; }
};

class ArgMaxOpMaker : public BaseArgMinMaxOpMaker {
 protected:
  const char* OpName() const override { return "ArgMax"; }
  const char* Name() const override { return "max"; }
};
}  // namespace operators
}  // namespace paddle