grid_sampler_op.cu 17.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/grid_sampler_op.h"
18 19 20
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
21 22 23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {

static __forceinline__ __device__ bool in_bounds(int h, int w, int H, int W) {
  return h >= 0 && h < H && w >= 0 && w < W;
}

template <typename T>
static __forceinline__ __device__ void atomic_add(T* data, int h, int w, int sH,
                                                  int sW, int H, int W,
                                                  T delta) {
  if (in_bounds(h, w, H, W)) {
34
    platform::CudaAtomicAdd(data + h * sH + w * sW, delta);
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  }
}

template <typename T>
static __forceinline__ __device__ T _unnormalize(T coord, int size,
                                                 bool align_corners) {
  if (align_corners) {
    return ((coord + 1.f) / 2) * (size - 1);
  } else {
    return ((coord + 1.f) * size - 1) / 2;
  }
}

template <typename T>
static __forceinline__ __device__ T clip_indexes(T in, int max_value) {
  return min(static_cast<T>(max_value), max(in, static_cast<T>(0)));
}

template <typename T>
static __forceinline__ __device__ T reflect_indexes(T in, int twice_low,
                                                    int twice_high) {
  if (twice_low == twice_high) {
    return static_cast<T>(0);
  }
  T min = static_cast<T>(twice_low) / 2;
  T span = static_cast<T>(twice_high - twice_low) / 2;
  in = fabs(in - min);
  T extra = fmod(in, span);
  int flips = static_cast<int>(floor(in / span));
  if (flips % 2 == 0) {
    return extra + min;
  } else {
    return span - extra + min;
  }
}

template <typename T>
static __forceinline__ __device__ T compute_positions(T coord, int size,
                                                      PaddingMode padding_mode,
                                                      bool align_corners) {
  coord = _unnormalize<T>(coord, size, align_corners);
  if (padding_mode == PaddingMode::border) {
    coord = clip_indexes(coord, size - 1);
  } else if (padding_mode == PaddingMode::reflect) {
    if (align_corners) {
      coord = reflect_indexes(coord, 0, 2 * (size - 1));
    } else {
      coord = reflect_indexes(coord, -1, 2 * size - 1);
    }
    coord = clip_indexes(coord, size - 1);
  }
  return coord;
}

template <typename T>
static __forceinline__ __device__ T _unnormalize_with_mask(T coord, int size,
                                                           bool align_corners,
                                                           T* grad_in) {
  if (align_corners) {
    *grad_in = static_cast<T>(size - 1) / 2;
    return ((coord + 1.f) / 2) * (size - 1);
  } else {
    *grad_in = static_cast<T>(size) / 2;
    return ((coord + 1.f) * size - 1) / 2;
  }
}

template <typename T>
static __forceinline__ __device__ T clip_indexes_with_mask(T in, int clip_limit,
                                                           T* grad_in) {
  if (in <= static_cast<T>(0)) {
    *grad_in = static_cast<T>(0);
    return static_cast<T>(0);
  } else {
    T max = static_cast<T>(clip_limit - 1);
    if (in >= max) {
      *grad_in = static_cast<T>(0);
      return max;
    } else {
      *grad_in = static_cast<T>(1);
      return in;
    }
  }
}

template <typename T>
static __forceinline__ __device__ T
reflect_indexes_with_mask(T in, int twice_low, int twice_high, T* grad_in) {
  if (twice_low == twice_high) {
    *grad_in = static_cast<T>(0);
    return static_cast<T>(0);
  }
  int grad_in_mult_;
  T min = static_cast<T>(twice_low) / 2;
  T span = static_cast<T>(twice_high - twice_low) / 2;
  in = in - min;
  if (in < static_cast<T>(0)) {
    grad_in_mult_ = -1;
    in = -in;
  } else {
    grad_in_mult_ = 1;
  }
  T extra = fmod(in, span);
  int flips = static_cast<int>(floor(in / span));
  if (flips % 2 == 0) {
    *grad_in = static_cast<T>(grad_in_mult_);
    return extra + min;
  } else {
    *grad_in = static_cast<T>(-grad_in_mult_);
    return span - extra + min;
  }
}

template <typename T>
static __forceinline__ __device__ T
compute_positions_with_mask(T coord, int size, PaddingMode padding_mode,
                            bool align_corners, T* grad_in) {
  T grad_clip, grad_refl;
  coord = _unnormalize_with_mask<T>(coord, size, align_corners, grad_in);
  if (padding_mode == PaddingMode::border) {
    coord = clip_indexes_with_mask(coord, size, &grad_clip);
    *grad_in = (*grad_in) * grad_clip;
  } else if (padding_mode == PaddingMode::reflect) {
    if (align_corners) {
      coord = reflect_indexes_with_mask(coord, 0, 2 * (size - 1), &grad_refl);
    } else {
      coord = reflect_indexes_with_mask(coord, -1, 2 * size - 1, &grad_refl);
    }
    coord = clip_indexes_with_mask(coord, size, &grad_clip);
    *grad_in = (*grad_in) * grad_refl * grad_clip;
  }

  return coord;
}

template <typename T>
__global__ void grid_sample_cuda_kernel(const int nthreads, int n, int out_c,
                                        int out_h, int out_w, int in_h,
                                        int in_w, const T* input, const T* grid,
                                        T* output, const Mode mode,
                                        const PaddingMode padding_mode,
                                        bool align_corners) {
  int inp_sN = out_c * in_h * in_w;

  int inp_sC = in_h * in_w;
  int inp_sH = in_w;
  int inp_sW = 1;
  int grid_sN = out_h * out_w * 2;
  int grid_sH = out_w * 2;
  int grid_sW = 2;
  int grid_sCoor = 1;
  int out_sN = out_c * out_h * out_w;
  int out_sC = out_h * out_w;
  int out_sH = out_w;
  int out_sW = 1;
  CUDA_KERNEL_LOOP(index, nthreads) {
    const int w = index % out_w;
    const int h = (index / out_w) % out_h;
    const int n = index / (out_h * out_w);
    const int grid_offset = n * grid_sN + h * grid_sH + w * grid_sW;

    T ix = grid[grid_offset];
    T iy = grid[grid_offset + grid_sCoor];

    ix = compute_positions(ix, in_w, padding_mode, align_corners);
    iy = compute_positions(iy, in_h, padding_mode, align_corners);
    if (mode == Mode::bilinear) {
      int ix_nw = static_cast<int>(floor(ix));
      int iy_nw = static_cast<int>(floor(iy));
      int ix_ne = ix_nw + 1;
      int iy_ne = iy_nw;
      int ix_sw = ix_nw;
      int iy_sw = iy_nw + 1;
      int ix_se = ix_nw + 1;
      int iy_se = iy_nw + 1;

      T nw = (ix_se - ix) * (iy_se - iy);
      T ne = (ix - ix_sw) * (iy_sw - iy);
      T sw = (ix_ne - ix) * (iy - iy_ne);
      T se = (ix - ix_nw) * (iy - iy_nw);

      auto inp_offset_NC = n * inp_sN;
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
      auto out_ptr_NCHW = output + n * out_sN + h * out_sH + w * out_sW;
      for (int c = 0; c < out_c;
           ++c, inp_offset_NC += inp_sC, out_ptr_NCHW += out_sC) {
        *out_ptr_NCHW = static_cast<T>(0);
        if (in_bounds(iy_nw, ix_nw, in_h, in_w)) {
          *out_ptr_NCHW +=
              input[inp_offset_NC + iy_nw * inp_sH + ix_nw * inp_sW] * nw;
        }
        if (in_bounds(iy_ne, ix_ne, in_h, in_w)) {
          *out_ptr_NCHW +=
              input[inp_offset_NC + iy_ne * inp_sH + ix_ne * inp_sW] * ne;
        }
        if (in_bounds(iy_sw, ix_sw, in_h, in_w)) {
          *out_ptr_NCHW +=
              input[inp_offset_NC + iy_sw * inp_sH + ix_sw * inp_sW] * sw;
        }
        if (in_bounds(iy_se, ix_se, in_h, in_w)) {
          *out_ptr_NCHW +=
              input[inp_offset_NC + iy_se * inp_sH + ix_se * inp_sW] * se;
        }
      }
    } else if (mode == Mode::nearest) {
W
whs 已提交
240 241
      int ix_nearest = static_cast<int>(std::nearbyint(ix));
      int iy_nearest = static_cast<int>(std::nearbyint(iy));
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
      auto inp_offset_NC = n * inp_sN;
      auto out_ptr_NCHW = output + n * out_sN + h * out_sH + w * out_sW;
      for (int c = 0; c < out_c;
           ++c, inp_offset_NC += inp_sC, out_ptr_NCHW += out_sC) {
        if (in_bounds(iy_nearest, ix_nearest, in_h, in_w)) {
          *out_ptr_NCHW =
              input[inp_offset_NC + iy_nearest * inp_sH + ix_nearest * inp_sW];
        } else {
          *out_ptr_NCHW = static_cast<T>(0);
        }
      }
    }
  }
}

template <typename T>
class GridSampleOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.cuda_device_context();
    auto align_corners = ctx.Attr<bool>("align_corners");
    auto padding_mode_s = ctx.Attr<std::string>("padding_mode");
    auto mode_s = ctx.Attr<std::string>("mode");
    PaddingMode padding_mode;
    Mode mode;
    if (padding_mode_s == "border") {
      padding_mode = PaddingMode::border;
269
    } else if (padding_mode_s == "reflection") {
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
      padding_mode = PaddingMode::reflect;
    } else {
      padding_mode = PaddingMode::zeros;
    }

    if (mode_s == "nearest") {
      mode = Mode::nearest;
    } else {
      mode = Mode::bilinear;
    }

    auto* input = ctx.Input<Tensor>("X");
    auto* grid = ctx.Input<Tensor>("Grid");
    const int n = grid->dims()[0];
    const int out_h = grid->dims()[1];
    const int out_w = grid->dims()[2];
    const int c = input->dims()[1];
    const int in_h = input->dims()[2];
    const int in_w = input->dims()[3];
    VLOG(3) << "n: " << n << "; c: " << c << "; out_h: " << out_h
            << "; out_w: " << out_w;
    auto* output = ctx.Output<Tensor>("Output");
    auto* output_data = output->mutable_data<T>(ctx.GetPlace());
293 294
    VLOG(3) << "out dims: " << output->dims()[0] << "; " << output->dims()[1]
            << "; " << output->dims()[2] << "; " << output->dims()[3];
295
    pten::funcs::SetConstant<paddle::platform::CUDADeviceContext, T>()(
296 297 298
        dev_ctx, output, static_cast<T>(0));
    int count = static_cast<int>(n * out_h * out_w);
    auto cu_stream = dev_ctx.stream();
299 300 301 302 303
    int block_size = 512;
    int grid_size = (count + block_size - 1) / block_size;
    VLOG(3) << "cuda launch - grid dims: " << grid_size << "; block dims"
            << block_size;
    grid_sample_cuda_kernel<T><<<grid_size, block_size, 0, cu_stream>>>(
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
        count, n, c, out_h, out_w, in_h, in_w, input->data<T>(),
        grid->data<T>(), output_data, mode, padding_mode, align_corners);
  }
};

template <typename T>
__global__ void grid_sampler_cuda_backward_kernel(
    const int nthreads, const T* grad_output, const T* input, const T* grid,
    int n, int out_c, int out_h, int out_w, int in_h, int in_w, T* grad_input,
    T* grad_grid, const Mode mode, const PaddingMode padding_mode,
    bool align_corners) {
  int inp_sN = out_c * in_h * in_w;
  int inp_sC = in_h * in_w;
  int inp_sH = in_w;
  int inp_sW = 1;
  int grid_sN = out_h * out_w * 2;
  int grid_sH = out_w * 2;
  int grid_sW = 2;
  int grid_sCoor = 1;

  int gOut_sN = out_c * out_h * out_w;
  int gOut_sC = out_h * out_w;
  int gOut_sH = out_w;
  int gOut_sW = 1;

  CUDA_KERNEL_LOOP(index, nthreads) {
    const int w = index % out_w;
    const int h = (index / out_w) % out_h;
    const int n = index / (out_h * out_w);
    const int grid_offset = n * grid_sN + h * grid_sH + w * grid_sW;

    T ix = grid[grid_offset];
    T iy = grid[grid_offset + grid_sCoor];

    T gix_mult, giy_mult;
    ix = compute_positions_with_mask(ix, in_w, padding_mode, align_corners,
                                     &gix_mult);
    iy = compute_positions_with_mask(iy, in_h, padding_mode, align_corners,
                                     &giy_mult);

    if (mode == Mode::bilinear) {
      int ix_nw = static_cast<int>(floor(ix));
      int iy_nw = static_cast<int>(floor(iy));
      int ix_ne = ix_nw + 1;
      int iy_ne = iy_nw;
      int ix_sw = ix_nw;
      int iy_sw = iy_nw + 1;
      int ix_se = ix_nw + 1;
      int iy_se = iy_nw + 1;

      T nw = (ix_se - ix) * (iy_se - iy);
      T ne = (ix - ix_sw) * (iy_sw - iy);
      T sw = (ix_ne - ix) * (iy - iy_ne);
      T se = (ix - ix_nw) * (iy - iy_nw);

      T gix = static_cast<T>(0), giy = static_cast<T>(0);
      int gOut_offset = n * gOut_sN + h * gOut_sH + w * gOut_sW;
      T* gInp_ptr_NC = grad_input + n * inp_sN;
      int inp_offset_NC = n * inp_sN;
      for (int c = 0; c < out_c; ++c, inp_offset_NC += inp_sC,
               gInp_ptr_NC += inp_sC, gOut_offset += gOut_sC) {
        T gOut = grad_output[gOut_offset];

        atomic_add(gInp_ptr_NC, iy_nw, ix_nw, inp_sH, inp_sW, in_h, in_w,
                   nw * gOut);
        atomic_add(gInp_ptr_NC, iy_ne, ix_ne, inp_sH, inp_sW, in_h, in_w,
                   ne * gOut);
        atomic_add(gInp_ptr_NC, iy_sw, ix_sw, inp_sH, inp_sW, in_h, in_w,
                   sw * gOut);
        atomic_add(gInp_ptr_NC, iy_se, ix_se, inp_sH, inp_sW, in_h, in_w,
                   se * gOut);

        if (in_bounds(iy_nw, ix_nw, in_h, in_w)) {
          T nw_val = input[inp_offset_NC + iy_nw * inp_sH + ix_nw * inp_sW];
          gix -= nw_val * (iy_se - iy) * gOut;
          giy -= nw_val * (ix_se - ix) * gOut;
        }
        if (in_bounds(iy_ne, ix_ne, in_h, in_w)) {
          T ne_val = input[inp_offset_NC + iy_ne * inp_sH + ix_ne * inp_sW];
          gix += ne_val * (iy_sw - iy) * gOut;
          giy -= ne_val * (ix - ix_sw) * gOut;
        }
        if (in_bounds(iy_sw, ix_sw, in_h, in_w)) {
          T sw_val = input[inp_offset_NC + iy_sw * inp_sH + ix_sw * inp_sW];
          gix -= sw_val * (iy - iy_ne) * gOut;
          giy += sw_val * (ix_ne - ix) * gOut;
        }
        if (in_bounds(iy_se, ix_se, in_h, in_w)) {
          T se_val = input[inp_offset_NC + iy_se * inp_sH + ix_se * inp_sW];
          gix += se_val * (iy - iy_nw) * gOut;
          giy += se_val * (ix - ix_nw) * gOut;
        }
      }

398 399 400 401 402
      if (grad_grid != nullptr) {
        T* gGrid_ptr_NHW = grad_grid + index * grid_sW;
        gGrid_ptr_NHW[0] = gix_mult * gix;
        gGrid_ptr_NHW[1] = giy_mult * giy;
      }
403
    } else if (mode == Mode::nearest) {
W
whs 已提交
404 405
      int ix_nearest = static_cast<int>(std::nearbyint(ix));
      int iy_nearest = static_cast<int>(std::nearbyint(iy));
406 407 408 409 410 411 412 413 414

      int gOut_offset = n * gOut_sN + h * gOut_sH + w * gOut_sW;
      T* gInp_ptr_NC = grad_input + n * inp_sN;
      for (int c = 0; c < out_c;
           ++c, gInp_ptr_NC += inp_sC, gOut_offset += gOut_sC) {
        atomic_add(gInp_ptr_NC, iy_nearest, ix_nearest, inp_sH, inp_sW, in_h,
                   in_w, grad_output[gOut_offset]);
      }

415 416 417 418 419
      if (grad_grid != nullptr) {
        T* gGrid_ptr_NHW = grad_grid + index * grid_sW;
        gGrid_ptr_NHW[0] = static_cast<T>(0);
        gGrid_ptr_NHW[1] = static_cast<T>(0);
      }
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    }
  }
}

template <typename T>
class GridSampleGradOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.cuda_device_context();
    auto align_corners = ctx.Attr<bool>("align_corners");
    auto padding_mode_s = ctx.Attr<std::string>("padding_mode");
    auto mode_s = ctx.Attr<std::string>("mode");

    PaddingMode padding_mode;
    Mode mode;
    if (padding_mode_s == "border") {
      padding_mode = PaddingMode::border;
437
    } else if (padding_mode_s == "reflection") {
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
      padding_mode = PaddingMode::reflect;
    } else {
      padding_mode = PaddingMode::zeros;
    }

    if (mode_s == "nearest") {
      mode = Mode::nearest;
    } else {
      mode = Mode::bilinear;
    }

    auto* input = ctx.Input<Tensor>("X");
    auto* grid = ctx.Input<Tensor>("Grid");
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));

    const int n = grid->dims()[0];
    const int out_h = grid->dims()[1];
    const int out_w = grid->dims()[2];
    const int c = input->dims()[1];
    const int in_h = input->dims()[2];
    const int in_w = input->dims()[3];

    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    input_grad->mutable_data<T>(ctx.GetPlace());
462
    pten::funcs::SetConstant<paddle::platform::CUDADeviceContext, T>()(
463 464
        ctx.template device_context<paddle::platform::CUDADeviceContext>(),
        input_grad, static_cast<T>(0));
465 466 467 468 469

    T* grid_grad_data = nullptr;
    if (ctx.HasOutput(framework::GradVarName("Grid"))) {
      auto* grid_grad = ctx.Output<Tensor>(framework::GradVarName("Grid"));
      grid_grad_data = grid_grad->mutable_data<T>(ctx.GetPlace());
470
      pten::funcs::SetConstant<paddle::platform::CUDADeviceContext, T>()(
471 472 473
          ctx.template device_context<paddle::platform::CUDADeviceContext>(),
          grid_grad, static_cast<T>(0));
    }
474 475 476

    int count = static_cast<int>(n * out_h * out_w);
    auto cu_stream = dev_ctx.stream();
477 478 479 480 481 482
    int block_size = 512;
    int grid_size = (count + block_size - 1) / block_size;
    VLOG(3) << "cuda launch grad kernel - grid dims: " << grid_size
            << "; block dims" << block_size << "; count: " << count;
    grid_sampler_cuda_backward_kernel<
        T><<<grid_size, block_size, 0, cu_stream>>>(
483
        count, output_grad->data<T>(), input->data<T>(), grid->data<T>(), n, c,
484 485
        out_h, out_w, in_h, in_w, input_grad->data<T>(), grid_grad_data, mode,
        padding_mode, align_corners);
486 487 488 489 490 491 492 493 494 495 496 497 498 499
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_CUDA_KERNEL(grid_sampler, ops::GridSampleOpCUDAKernel<float>,
                        ops::GridSampleOpCUDAKernel<double>);
REGISTER_OP_CUDA_KERNEL(grid_sampler_grad,
                        ops::GridSampleGradOpCUDAKernel<float>,
                        ops::GridSampleGradOpCUDAKernel<double>);