ascend_optimizer.py 6.6 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
H
hutuxian 已提交
16 17 18 19
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import Optimizer
import paddle.fluid.core as core
import numpy as np
G
gongweibao 已提交
20
from . import ascend_parser
H
hutuxian 已提交
21 22 23 24 25 26 27 28 29 30


class AscendIRParser(object):
    def __init__(self):
        self.graph_idx = 0

    def _construct_input_map(self, input_varlist):
        ret_map = {}
        ge_in_operator = []
        for id, var in enumerate(input_varlist):
G
gongweibao 已提交
31 32
            if var.is_data: # input data
                ge_input = core.GEOperatorFactory.create_operator(var.name, "Data").set_attr_int32("index", id)
H
hutuxian 已提交
33 34
                ret_map[var.name] = ge_input
                ge_in_operator.append(ge_input)
G
gongweibao 已提交
35 36 37
            else: # param, learning ...
                ge_input = core.GEOperatorFactory.create_operator(var.name, "Variable")
                ge_input.update_output_desc("y", core.GETensorDesc(core.GEShape(var.shape), core.GEFormat.FORMAT_ND, core.GEDataType.DT_FLOAT))
H
hutuxian 已提交
38 39 40 41 42 43
                ret_map[var.name] = ge_input
        return ge_in_operator, ret_map

    def parse_op(self, op):
        if op.type in ascend_parser.registerd_op:
            print("Op[%s] has been registered, begin to parse it" % (op.type))
G
gongweibao 已提交
44
            op_parser = self.parser_factory.create_parse(ascend_parser.registerd_op[op.type])
H
hutuxian 已提交
45 46
            op_parser.apply(op)
        else:
G
gongweibao 已提交
47 48 49
            print("Op[%s] has not been registered, so we have to skip it" % (op.type))

    def _parse_program(self, graph_name, program, input_varlist=[], fetch_list=[]):
H
hutuxian 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63
        begin_graph_idx = self.graph_idx
        ge_in_operator = []
        ge_out_operator = []
        self.var2geop = {}

        block = program.global_block()
        if len(block.ops) == 0:
            print("There is no ops in program %s" % (graph_name))
            return []

        graph = core.GEGraph(graph_name)

        ge_in_operator, self.var2geop = self._construct_input_map(input_varlist)

G
gongweibao 已提交
64
        self.parser_factory = ascend_parser.AscendParserFactory(graph, self.var2geop)
H
hutuxian 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        for i, curop in list(enumerate(block.ops)):
            self.parse_op(curop)

        # Set fetch_var for GE
        for e in fetch_list:
            name = e
            if not isinstance(e, str):
                name = e.name
            ge_out_operator.append(self.var2geop[name])

        # (Debug) If you want to print back prop vars, append/assign the varname in ge_out_operator here, such as: 
        # if graph_name == "main":
        #     ge_out_operator.append(self.var2geop["reduce_sum_0.tmp_0@GRAD"])

        # Add ops that may be input of a graph, such as const.
        for varname, geop in self.var2geop.items():
            if varname.startswith("geinput"):
                ge_in_operator.append(geop)

        graph.set_inputs(ge_in_operator).set_outputs(ge_out_operator)

        # Remove ops of origin program
        op_num = len(block.ops)
        for i in range(op_num - 1, -1, -1):
            block._remove_op(i)

        input_varlist = [var for var in input_varlist if var.is_data]

        block.append_op(
            type="ascend_trigger",
            inputs={"FeedList": input_varlist},
            outputs={"FetchList": fetch_list},
            attrs={'graph_idx': self.graph_idx})
        self.graph_idx += 1
        return graph

G
gongweibao 已提交
101
    def parse_program(self, startup_program, main_program, input_varlist, fetch_list):
H
hutuxian 已提交
102
        startup_graph = self._parse_program("startup", startup_program)
G
gongweibao 已提交
103
        main_graph = self._parse_program("main", main_program, input_varlist, fetch_list)
H
hutuxian 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        return startup_graph, main_graph


# AscendOptimizer is a wrapper for basic optimizer now
# We will make it part of fleet meta_optimizer in the future
class AscendOptimizer(Optimizer):
    def __init__(self, optimizer, fetch_list=[]):
        self.inner_opt = optimizer
        self.fetch_list = fetch_list

    def __del__(self):
        core.ge_finalize()

    def _can_apply(self):
        if not self.user_defined_strategy.ascend:
            return False
        # TODO(hutuxian): other check here
        return True

    def _disable_strategy(self, dist_strategy):
        dist_strategy.ascend = False
        dist_strategy.ascend_configs = {}

G
gongweibao 已提交
127
    def _get_input_varlist(self, program):
H
hutuxian 已提交
128 129 130 131 132 133 134 135 136 137
        ret_list = []
        for var in program.list_vars():
            if var.is_data or var.persistable:
                ret_list.append(var)
        return ret_list

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
G
gongweibao 已提交
138 139 140
                 no_grad_set=None,
                 auto_dp=False):
        minimized = self.inner_opt.minimize(loss, startup_program=startup_program)
H
hutuxian 已提交
141 142 143

        self.ascend_instance = core.AscendInstance()

G
gongweibao 已提交
144 145 146 147 148 149 150
        from paddle.distributed import fleet
        if auto_dp and fleet.worker_num() > 1:
            from paddle.fluid.transpiler import ascend_transpiler
            t = ascend_transpiler.AscendTranspiler(startup_program, loss.block.program)
            t.transpile()
            print(loss.block.program)

H
hutuxian 已提交
151 152
        # Config about Graph Engine can be found in https://support.huaweicloud.com/
        config = {
G
gongweibao 已提交
153
            "ge.exec.deviceId": str(fleet.rank_in_node()),
H
hutuxian 已提交
154
            "ge.graphRunMode": "1",
155 156 157 158 159 160
            "ge.exec.precision_mode": "must_keep_origin_dtype",
            # if multi mode
            "ge.exec.rankTableFile": os.getenv("RANK_TABLE_FILE"),
            "ge.exec.rankId": str(fleet.worker_index()),
            "ge.exec.isUseHcom": "1",
            "ge.exec.deployMode": "0",
H
hutuxian 已提交
161
        }
G
gongweibao 已提交
162
        print("ge_initialize config:", config)
H
hutuxian 已提交
163 164 165 166 167 168 169 170
        core.ge_initialize(config)

        # Init Session
        self.ascend_instance.init_global_resources()

        main_block = loss.block
        self.parser = AscendIRParser()

G
gongweibao 已提交
171
        input_varlist = self._get_input_varlist(main_block.program)
H
hutuxian 已提交
172 173 174 175 176 177 178
        startup_graph, main_graph = self.parser.parse_program(
            startup_program, main_block.program, input_varlist, self.fetch_list)

        self.ascend_instance.add_ascend_subgraph(0, startup_graph)
        self.ascend_instance.add_ascend_subgraph(1, main_graph)

        return minimized