clip.py 3.1 KB
Newer Older
Y
Yu Yang 已提交
1 2
import functools
import layers
F
fengjiayi 已提交
3
from . import core
Y
Yu Yang 已提交
4

F
fengjiayi 已提交
5 6 7
__all__ = [
    'GradientClipByValue', 'append_gradient_clip_ops', 'error_clip_callback'
]
Y
Yu Yang 已提交
8 9


F
fengjiayi 已提交
10
class BaseErrorClipAttr(object):
F
fengjiayi 已提交
11
    def append_clip_op(self, block, grad_name):
F
fengjiayi 已提交
12 13 14 15 16 17 18 19 20 21 22 23 24
        raise NotImplementedError()


class ErrorClipByValue(BaseErrorClipAttr):
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
    def append_clip_op(self, block, grad_name):
        block.append_op(
            type="clip",
            inputs={"X": grad_name},
            outputs={"Out": grad_name},
            attrs={"min": self.min,
                   "max": self.max})


def error_clip_callback(block, context):
    # the context is a grad_to_var map
    grad_to_var = context
    op_desc = block.desc.op(block.desc.op_size() - 1)
    for grad_n in filter(lambda n: grad_to_var.has_key(n),
                         op_desc.output_arg_names()):
        fwd_var = block.var_recursive(grad_to_var[grad_n])
        error_clip = getattr(fwd_var, "error_clip", None)
        if error_clip is not None:
            error_clip.append_clip_op(block, grad_n)
F
fengjiayi 已提交
44 45


Y
Yu Yang 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
class BaseGradientClipAttr(object):
    def process_context(self, context, p_g):
        raise NotImplementedError()

    def create_operators(self, param, grad):
        raise NotImplementedError()


class NullGradientClipAttr(BaseGradientClipAttr):
    def process_context(self, context, p_g):
        pass

    def create_operators(self, param, grad):
        return param, grad


class GradientClipByValue(BaseGradientClipAttr):
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

    def process_context(self, context, p_g):
        pass

    def create_operators(self, param, grad):
        new_grad = layers.clip(x=grad, min=self.min, max=self.max)
        return param, new_grad


F
fengjiayi 已提交
80 81 82 83 84 85 86 87 88 89 90 91
class GradientClipByNorm(BaseGradientClipAttr):
    def __init__(self, clip_norm):
        self.clip_norm = clip_norm

    def process_context(self, context, p_g):
        pass

    def create_operators(self, param, grad):
        new_grad = layers.clip_by_norm(x=grad, max_norm=self.clip_norm)
        return param, new_grad


Y
Yu Yang 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
def append_gradient_clip_ops(param_grad):
    context = dict()
    create_op_callbacks = []
    for p, g in param_grad:
        clip_attr = getattr(p, 'clip_attr', NullGradientClipAttr())
        if clip_attr is None:
            clip_attr = NullGradientClipAttr()
        if not isinstance(clip_attr, BaseGradientClipAttr):
            raise TypeError(
                "clip attribute should be an instance of BaseGradientClippingAttr"
            )

        clip_attr.process_context(context=context, p_g=param_grad)
        create_op_callbacks.append(
            functools.partial(
                clip_attr.create_operators, param=p, grad=g))

    return [each_callback() for each_callback in create_op_callbacks]


ClipByValue = GradientClipByValue