op_params.h 6.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/lite/core/compatible_tensor.h"
#include "paddle/fluid/lite/core/framework.pb.h"
#include "paddle/fluid/lite/utils/all.h"

/*
 * This file contains all the argument parameter data structure for operators.
 */

namespace paddle {
namespace lite {
namespace operators {

using param_t = Any;

/// ----------------------- Functional operators ------------------------------
struct FeedParam {
  const std::vector<lite::Tensor>* feed_list{};
  lite::Tensor* out{};
  int col;
};

struct FetchParam {
  const lite::Tensor* input{};
  std::vector<lite::Tensor>* fetch_list{};
  int col;
};

// Helper op for lite framework
struct IoCopyParam {
  const lite::Tensor* x{};
  lite::Tensor* y{};
};

/// -------------------------- NN operators ------------------------------------

struct FcParam {
  lite::Tensor* input{};
  lite::Tensor* w{};
  lite::Tensor* bias{};
  lite::Tensor* output{};
  lite::DDim in_mat_dims;
  int in_num_col_dims{1};
T
tensor-tang 已提交
60
  bool weight_transposed{false};
T
tensor-tang 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
};

struct ReluParam {
  lite::Tensor* input{};
  lite::Tensor* output{};
};

// For Mul Op
struct MulParam {
  lite::Tensor* x{};
  lite::Tensor* y{};
  lite::Tensor* output{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
};

struct MulGradParam {
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* output_grad{};
  lite::Tensor* x_grad{};
  lite::Tensor* y_grad{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
};

// For Scale Op
struct ScaleParam {
  lite::Tensor* x{};
  lite::Tensor* output{};

  float scale{1.};
  float bias{};
  bool bias_after_scale{true};
};

// For Softmax op
struct SoftmaxParam {
  lite::Tensor* x{};
  lite::Tensor* output{};
  int axis{-1};
};

// For Reshape and Reshape2 Op
struct ReshapeParam {
  const lite::Tensor* x{};
  const lite::Tensor* actual_shape{nullptr};
  lite::Tensor* output{};
  lite::Tensor* xshape{};

  std::vector<int> shape{};
  bool inplace{false};
};

// For Concat op
struct ConcatParam {
  std::vector<lite::Tensor*> x{};
  lite::Tensor* output{};
  int axis{0};
};

// For Convolution op
struct ConvParam {
  lite::Tensor* x{};
  lite::Tensor* filter{};
T
tensor-tang 已提交
128 129
  lite::Tensor* bias{nullptr};
  lite::Tensor* residualData{nullptr};
T
tensor-tang 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  lite::Tensor* output{};
  std::vector<int> strides{1, 1};
  std::vector<int> paddings{0, 0};
  int groups{1};
  std::vector<int> dilations{1, 1};
  bool fuse_relu_before_depthwise_conv{false};
  bool use_mkldnn{false};
  bool fuse_relu{false};  // only used in mkldnn kernel
  bool use_quantizer{
      false};  // set true for op that should be quantized, only used for cpu
  bool fuse_residual_connection{false};
  float scale_in{1.0f};           // only used with mkl-dnn int8
  float scale_out{1.0f};          // only used with mkl-dnn int8
  float scale_in_eltwise{1.0f};   // only used with mkl-dnn int8
  float scale_weights{1.0f};      // only used with mkl-dnn int8
  bool force_fp32_output{false};  // only used in mkl-dnn int8
  std::string data_format{"Anylayout"};
};

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
// For BatchNorm op
struct BatchNormParam {
  lite::Tensor* x{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* mean{};
  lite::Tensor* variance{};
  lite::Tensor* y{};
  lite::Tensor* mean_out{};
  lite::Tensor* variance_out{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  bool is_test{true};
  bool use_global_stats{false};
  float epsilon;
  float momentum;
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
};

T
tensor-tang 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
// For Pooling op
struct PoolParam {
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::string pooling_type{""};
  std::vector<int> ksize{};
  bool global_pooling{
      false};  // if true, knernel size and paddings will be ignored
  std::vector<int> strides{1, 1};
  std::vector<int> paddings{0, 0};
  bool exclusive{true};
  bool adaptive{false};
  bool ceil_mode{false};
  bool use_quantizer{false};
  std::string data_format{"AnyLayout"};
};

// For Dropout op
struct DropoutParam {
  const lite::Tensor* x{};
  lite::Tensor* output{};
  lite::Tensor* mask{};
  float dropout_prob{.5f};
  bool is_test{false};
  bool fix_seed{false};
  int seed{0};
  std::string dropout_implementation{"downgrade_in_infer"};
};

Z
zhupengyang 已提交
197 198 199
// For Split op
struct SplitParam {
  lite::Tensor* x{};
Z
zhupengyang 已提交
200
  std::vector<lite::Tensor*> output{};
Z
zhupengyang 已提交
201 202
  int axis{-1};
  int num{0};
Z
zhupengyang 已提交
203
  std::vector<int> sections;
Z
zhupengyang 已提交
204 205
};

206 207 208 209 210 211 212 213 214
// For Transpose op
struct TransposeParam {
  const lite::Tensor* x{};
  lite::Tensor* output{};
  std::vector<int> axis;
  bool use_mkldnn{false};
  std::string data_format{"AnyLayout"};
};

T
tensor-tang 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
/// ----------------------- element wise operators ----------------------
struct ElementwiseParam {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int axis{-1};  // for broadcasting.
};

struct ElementwiseGradParam {
  const lite::Tensor* Y{};
  const lite::Tensor* Out_grad{};
  lite::Tensor* X_grad{};
  lite::Tensor* Y_grad{};
  int axis{-1};  // for broadcasting.
};

231 232 233 234 235 236 237 238
struct FusionElementwiseActivationParam : public ElementwiseParam {
  std::string act_type;
};

struct FusionElementwiseActivationGradParam : public ElementwiseGradParam {
  std::string act_type;
};

T
tensor-tang 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
/// ----------------------- activation operators ----------------------
struct ActivationParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

struct ActivationGradParam {
  const lite::Tensor* X{};
  const lite::Tensor* Out{};
  // for backward
  lite::Tensor* X_grad{};
  const lite::Tensor* Out_grad{};
};

/// ----------------------- mean operators ----------------------
struct MeanParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

struct MeanGradParam {
  const lite::Tensor* X{};
  const lite::Tensor* Out_grad{};
  // for backward
  lite::Tensor* X_grad{};
};

/// ----------------------- fill_constant operators ----------------------
struct FillConstantParam {
  int dtype{framework::proto::VarType::FP32};
  std::vector<int64_t> shape{};
  float value{0.0f};
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
  lite::Tensor* Out{};
};

/// ----------------------- sgd operators ----------------------
struct SGDParam {
  int dtype{framework::proto::VarType::FP32};

  const lite::Tensor* Param{};
  const lite::Tensor* LearningRate{};
  const lite::Tensor* Grad{};
  lite::Tensor* ParamOut{};
};

}  // namespace operators
}  // namespace lite
}  // namespace paddle