quickstart_en.rst 1.9 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Quick Start
============

Quick Install
-------------

You can use pip to install PaddlePaddle with a single command, supports
CentOS 6 above, Ubuntu 14.04 above or MacOS 10.12, with Python 2.7 installed.
Simply run the following command to install, the version is cpu_avx_openblas:

  .. code-block:: bash

     pip install paddlepaddle

If you need to install GPU version (cuda7.5_cudnn5_avx_openblas), run:

  .. code-block:: bash

     pip install paddlepaddle-gpu

T
tangwei12 已提交
21
For more details about installation and build: `install and Compile <http://www.paddlepaddle.org/docs/develop/documentation/fluid/en/build_and_install/index_en.html>`_ .
T
tangwei12 已提交
22 23 24 25 26 27 28 29 30

Quick Use
---------

Create a new file called housing.py, and paste this Python
code:


  .. code-block:: python
T
tangwei12 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
     import paddle
     import paddle.fluid as fluid
     
     
     x = fluid.layers.data(name='x', shape=[13], dtype='float32')
     place = fluid.CPUPlace()
     exe = fluid.Executor(place=place)
     feeder = fluid.DataFeeder(place=place, feed_list=[x])
     
     with fluid.scope_guard(fluid.core.Scope()):
         parameter_model = paddle.dataset.uci_housing.fluid_model()
     
         [inference_program, feed_target_names,fetch_targets] =  \
             fluid.io.load_inference_model(parameter_model, exe)
     
         predict_reader = paddle.batch(paddle.dataset.uci_housing.predict_reader(), batch_size=20)
     
         results = []
         for data in predict_reader():
             result = exe.run(inference_program,
                               feed=feeder.feed(data),
                               fetch_list=fetch_targets)
             results.append(result)
     
         for res in results:
             for i in xrange(len(res[0])):
                 print 'Predicted price: ${:,.2f}'.format(res[0][i][0] * 1000)

T
tangwei12 已提交
59 60
Run :code:`python housing.py` and voila! It should print out a list of predictions
for the test housing data.