test_strided_slice_op.py 16.9 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from op_test import OpTest
import numpy as np
import unittest
18
import paddle.fluid as fluid
19 20 21
import paddle

paddle.enable_static()
W
wangchaochaohu 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69


def strided_slice_native_forward(input, axes, starts, ends, strides):
    dim = input.ndim
    start = []
    end = []
    stride = []
    for i in range(dim):
        start.append(0)
        end.append(input.shape[i])
        stride.append(1)

    for i in range(len(axes)):
        start[axes[i]] = starts[i]
        end[axes[i]] = ends[i]
        stride[axes[i]] = strides[i]

    result = {
        1: lambda input, start, end, stride: input[start[0]:end[0]:stride[0]],
        2: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
                start[1]:end[1]:stride[1]],
        3: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
                start[1]:end[1]:stride[1], start[2]:end[2]:stride[2]],
        4: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
                start[1]:end[1]:stride[1], start[2]:end[2]:stride[2], start[3]:end[3]:stride[3]],
        5: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
                start[1]:end[1]:stride[1], start[2]:end[2]:stride[2], start[3]:end[3]:stride[3], start[4]:end[4]:stride[4]],
        6: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
                start[1]:end[1]:stride[1], start[2]:end[2]:stride[2], start[3]:end[3]:stride[3], \
                start[4]:end[4]:stride[4], start[5]:end[5]:stride[5]]
    }[dim](input, start, end, stride)

    return result


class TestStrideSliceOp(OpTest):
    def setUp(self):
        self.initTestCase()
        self.op_type = 'strided_slice'
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides)

        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
70 71
            'strides': self.strides,
            'infer_flags': self.infer_flags
W
wangchaochaohu 已提交
72 73 74 75 76 77 78 79 80
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(set(['Input']), 'Out')

    def initTestCase(self):
81
        self.input = np.random.rand(100)
W
wangchaochaohu 已提交
82 83 84 85
        self.axes = [0]
        self.starts = [-4]
        self.ends = [-3]
        self.strides = [1]
86
        self.infer_flags = [1]
W
wangchaochaohu 已提交
87 88 89 90


class TestStrideSliceOp1(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
91
        self.input = np.random.rand(100)
W
wangchaochaohu 已提交
92 93 94 95
        self.axes = [0]
        self.starts = [3]
        self.ends = [8]
        self.strides = [1]
96
        self.infer_flags = [1]
W
wangchaochaohu 已提交
97 98 99 100


class TestStrideSliceOp2(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
101
        self.input = np.random.rand(100)
W
wangchaochaohu 已提交
102 103 104 105
        self.axes = [0]
        self.starts = [5]
        self.ends = [0]
        self.strides = [-1]
106
        self.infer_flags = [1]
W
wangchaochaohu 已提交
107 108 109 110


class TestStrideSliceOp3(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
111
        self.input = np.random.rand(100)
W
wangchaochaohu 已提交
112 113 114 115
        self.axes = [0]
        self.starts = [-1]
        self.ends = [-3]
        self.strides = [-1]
116
        self.infer_flags = [1]
W
wangchaochaohu 已提交
117 118 119 120


class TestStrideSliceOp4(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
121
        self.input = np.random.rand(3, 4, 10)
W
wangchaochaohu 已提交
122 123 124 125
        self.axes = [0, 1, 2]
        self.starts = [0, -1, 0]
        self.ends = [2, -3, 5]
        self.strides = [1, -1, 1]
126
        self.infer_flags = [1, 1, 1]
W
wangchaochaohu 已提交
127 128 129 130


class TestStrideSliceOp5(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
131
        self.input = np.random.rand(5, 5, 5)
W
wangchaochaohu 已提交
132 133 134 135
        self.axes = [0, 1, 2]
        self.starts = [1, 0, 0]
        self.ends = [2, 1, 3]
        self.strides = [1, 1, 1]
136
        self.infer_flags = [1, 1, 1]
W
wangchaochaohu 已提交
137 138 139 140


class TestStrideSliceOp6(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
141
        self.input = np.random.rand(5, 5, 5)
W
wangchaochaohu 已提交
142 143 144 145
        self.axes = [0, 1, 2]
        self.starts = [1, -1, 0]
        self.ends = [2, -3, 3]
        self.strides = [1, -1, 1]
146
        self.infer_flags = [1, 1, 1]
W
wangchaochaohu 已提交
147 148 149 150


class TestStrideSliceOp7(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
151
        self.input = np.random.rand(5, 5, 5)
W
wangchaochaohu 已提交
152 153 154 155
        self.axes = [0, 1, 2]
        self.starts = [1, 0, 0]
        self.ends = [2, 2, 3]
        self.strides = [1, 1, 1]
156
        self.infer_flags = [1, 1, 1]
W
wangchaochaohu 已提交
157 158 159 160


class TestStrideSliceOp8(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
161
        self.input = np.random.rand(1, 100, 1)
W
wangchaochaohu 已提交
162 163 164 165
        self.axes = [1]
        self.starts = [1]
        self.ends = [2]
        self.strides = [1]
166
        self.infer_flags = [1]
W
wangchaochaohu 已提交
167 168 169 170


class TestStrideSliceOp9(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
171
        self.input = np.random.rand(1, 100, 1)
W
wangchaochaohu 已提交
172 173 174 175
        self.axes = [1]
        self.starts = [-1]
        self.ends = [-2]
        self.strides = [-1]
176
        self.infer_flags = [1]
W
wangchaochaohu 已提交
177 178 179 180


class TestStrideSliceOp10(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
181
        self.input = np.random.rand(10, 10)
W
wangchaochaohu 已提交
182 183 184 185
        self.axes = [0, 1]
        self.starts = [1, 0]
        self.ends = [2, 2]
        self.strides = [1, 1]
186
        self.infer_flags = [1, 1]
W
wangchaochaohu 已提交
187 188 189 190 191 192 193 194 195


class TestStrideSliceOp11(TestStrideSliceOp):
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 4)
        self.axes = [0, 1, 2, 3]
        self.starts = [1, 0, 0, 0]
        self.ends = [2, 2, 3, 4]
        self.strides = [1, 1, 1, 2]
196
        self.infer_flags = [1, 1, 1, 1]
W
wangchaochaohu 已提交
197 198 199 200 201 202 203 204 205


class TestStrideSliceOp12(TestStrideSliceOp):
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 4, 5)
        self.axes = [0, 1, 2, 3, 4]
        self.starts = [1, 0, 0, 0, 0]
        self.ends = [2, 2, 3, 4, 4]
        self.strides = [1, 1, 1, 1, 1]
206
        self.infer_flags = [1, 1, 1, 1]
W
wangchaochaohu 已提交
207 208 209 210 211 212 213 214 215


class TestStrideSliceOp13(TestStrideSliceOp):
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 6, 7, 8)
        self.axes = [0, 1, 2, 3, 4, 5]
        self.starts = [1, 0, 0, 0, 1, 2]
        self.ends = [2, 2, 3, 1, 2, 8]
        self.strides = [1, 1, 1, 1, 1, 2]
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        self.infer_flags = [1, 1, 1, 1, 1]


class TestStridedSliceOp_starts_ListTensor(OpTest):
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()

        starts_tensor = []
        for index, ele in enumerate(self.starts):
            starts_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts_infer,
            'ends': self.ends,
            'strides': self.strides,
            'infer_flags': self.infer_flags
        }

    def config(self):
240
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 1]
        self.infer_flags = [1, -1, 1]
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides)

        self.starts_infer = [1, 10, 2]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_ends_ListTensor(OpTest):
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()

        ends_tensor = []
        for index, ele in enumerate(self.ends):
            ends_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {'Input': self.input, 'EndsTensorList': ends_tensor}
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends_infer,
            'strides': self.strides,
            'infer_flags': self.infer_flags
        }

    def config(self):
279
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        self.starts = [1, 0, 0]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 2]
        self.infer_flags = [1, -1, 1]
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides)

        self.ends_infer = [3, 1, 4]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_starts_Tensor(OpTest):
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()
        self.inputs = {
            'Input': self.input,
            "StartsTensor": np.array(
                self.starts, dtype="int32")
        }
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            #'starts': self.starts,
            'ends': self.ends,
            'strides': self.strides,
            'infer_flags': self.infer_flags,
        }

    def config(self):
316
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 1]
        self.infer_flags = [-1, -1, -1]
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides)

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_ends_Tensor(OpTest):
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()
        self.inputs = {
            'Input': self.input,
            "EndsTensor": np.array(
                self.ends, dtype="int32")
        }
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            #'ends': self.ends,
            'strides': self.strides,
            'infer_flags': self.infer_flags,
        }

    def config(self):
351
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 1]
        self.infer_flags = [-1, -1, -1]
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides)

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_listTensor_Tensor(OpTest):
    def setUp(self):
        self.config()
        ends_tensor = []
        for index, ele in enumerate(self.ends):
            ends_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))
        self.op_type = "strided_slice"

        self.inputs = {
            'Input': self.input,
            "StartsTensor": np.array(
                self.starts, dtype="int32"),
            "EndsTensorList": ends_tensor
        }
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            #'starts': self.starts,
            #'ends': self.ends,
            'strides': self.strides,
            'infer_flags': self.infer_flags,
        }

    def config(self):
392
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 1]
        self.infer_flags = [-1, -1, -1]
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides)

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_strides_Tensor(OpTest):
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()
        self.inputs = {
            'Input': self.input,
            "StridesTensor": np.array(
                self.strides, dtype="int32")
        }
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            #'strides': self.strides,
            'infer_flags': self.infer_flags,
        }

    def config(self):
427
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
        self.starts = [1, -1, 2]
        self.ends = [2, 0, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, -1, 1]
        self.infer_flags = [-1, -1, -1]
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides)

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


# Test python API
444
class TestStridedSliceAPI(unittest.TestCase):
445
    def test_1(self):
446
        input = np.random.random([3, 4, 5, 6]).astype("float64")
447 448 449
        minus_1 = fluid.layers.fill_constant([1], "int32", -1)
        minus_3 = fluid.layers.fill_constant([1], "int32", -3)
        starts = fluid.layers.data(
450
            name='starts', shape=[3], dtype='int32', append_batch_size=False)
451
        ends = fluid.layers.data(
452
            name='ends', shape=[3], dtype='int32', append_batch_size=False)
453
        strides = fluid.layers.data(
454
            name='strides', shape=[3], dtype='int32', append_batch_size=False)
455 456 457 458 459

        x = fluid.layers.data(
            name="x",
            shape=[3, 4, 5, 6],
            append_batch_size=False,
460
            dtype="float64")
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
        out_1 = fluid.layers.strided_slice(
            x,
            axes=[0, 1, 2],
            starts=[-3, 0, 2],
            ends=[3, 100, -1],
            strides=[1, 1, 1])
        out_2 = fluid.layers.strided_slice(
            x,
            axes=[0, 1, 3],
            starts=[minus_3, 0, 2],
            ends=[3, 100, -1],
            strides=[1, 1, 1])
        out_3 = fluid.layers.strided_slice(
            x,
            axes=[0, 1, 3],
            starts=[minus_3, 0, 2],
            ends=[3, 100, minus_1],
            strides=[1, 1, 1])
        out_4 = fluid.layers.strided_slice(
            x, axes=[0, 1, 2], starts=starts, ends=ends, strides=strides)

482 483 484
        out_5 = x[-3:3, 0:100:2, -1:2:-1]
        out_6 = x[minus_3:3:1, 0:100:2, :, minus_1:2:minus_1]
        out_7 = x[minus_1, 0:100:2, :, -1:2:-1]
485 486 487 488 489 490 491

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
            fluid.default_main_program(),
            feed={
                "x": input,
                'starts': np.array([-3, 0, 2]).astype("int32"),
492
                'ends': np.array([3, 2147483648, -1]).astype("int64"),
493 494 495 496 497 498 499
                'strides': np.array([1, 1, 1]).astype("int32")
            },
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7])
        assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :])
500 501 502
        assert np.array_equal(res_5, input[-3:3, 0:100:2, -1:2:-1, :])
        assert np.array_equal(res_6, input[-3:3, 0:100:2, :, -1:2:-1])
        assert np.array_equal(res_7, input[-1, 0:100:2, :, -1:2:-1])
W
wangchaochaohu 已提交
503

504 505 506 507 508 509 510 511 512 513
    def test_dygraph_op(self):
        x = paddle.zeros(shape=[3, 4, 5, 6], dtype="float32")
        axes = [1, 2, 3]
        starts = [-3, 0, 2]
        ends = [3, 2, 4]
        strides_1 = [1, 1, 1]
        sliced_1 = paddle.strided_slice(
            x, axes=axes, starts=starts, ends=ends, strides=strides_1)
        assert sliced_1.shape == (3, 2, 2, 2)

514 515 516 517 518 519 520 521
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "Cannot use CUDAPinnedPlace in CPU only version")
    def test_cuda_pinned_place(self):
        with paddle.fluid.dygraph.guard():
            x = paddle.to_tensor(
                np.random.randn(2, 10), place=paddle.CUDAPinnedPlace())
            self.assertTrue(x.place.is_cuda_pinned_place())
            y = x[:, ::2]
522
            self.assertFalse(x.place.is_cuda_pinned_place())
523 524
            self.assertFalse(y.place.is_cuda_pinned_place())

W
wangchaochaohu 已提交
525 526 527

if __name__ == "__main__":
    unittest.main()