generate_proposal_labels_op.cc 23.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <math.h>
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/operators/detection/bbox_util.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/math/concat.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
const int kBoxDim = 4;

template <typename T>
void AppendRois(LoDTensor* out, int64_t offset, Tensor* to_add) {
  auto* out_data = out->data<T>();
  auto* to_add_data = to_add->data<T>();
  memcpy(out_data + offset, to_add_data, to_add->numel() * sizeof(T));
}

class GenerateProposalLabelsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("RpnRois"),
                   "Input(RpnRois) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("GtClasses"),
                   "Input(GtClasses) shouldn't be null.");
45 46
    PADDLE_ENFORCE(ctx->HasInput("IsCrowd"),
                   "Input(IsCrowd) shouldn't be null.");
47 48
    PADDLE_ENFORCE(ctx->HasInput("GtBoxes"),
                   "Input(GtBoxes) shouldn't be null.");
49
    PADDLE_ENFORCE(ctx->HasInput("ImInfo"), "Input(ImInfo) shouldn't be null.");
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

    PADDLE_ENFORCE(ctx->HasOutput("Rois"),
                   "Output(Rois) of RpnTargetAssignOp should not be null");
    PADDLE_ENFORCE(
        ctx->HasOutput("LabelsInt32"),
        "Output(LabelsInt32) of RpnTargetAssignOp should not be null");
    PADDLE_ENFORCE(
        ctx->HasOutput("BboxTargets"),
        "Output(BboxTargets) of RpnTargetAssignOp should not be null");
    PADDLE_ENFORCE(
        ctx->HasOutput("BboxInsideWeights"),
        "Output(BboxInsideWeights) of RpnTargetAssignOp should not be null");
    PADDLE_ENFORCE(
        ctx->HasOutput("BboxOutsideWeights"),
        "Output(BboxOutsideWeights) of RpnTargetAssignOp should not be null");

    auto rpn_rois_dims = ctx->GetInputDim("RpnRois");
    auto gt_classes_dims = ctx->GetInputDim("GtClasses");
68
    auto is_crowd_dims = ctx->GetInputDim("IsCrowd");
69
    auto gt_boxes_dims = ctx->GetInputDim("GtBoxes");
70
    auto im_info_dims = ctx->GetInputDim("ImInfo");
71 72 73 74 75

    PADDLE_ENFORCE_EQ(rpn_rois_dims.size(), 2,
                      "The rank of Input(RpnRois) must be 2.");
    PADDLE_ENFORCE_EQ(gt_boxes_dims.size(), 2,
                      "The rank of Input(GtBoxes) must be 2.");
76 77
    PADDLE_ENFORCE_EQ(im_info_dims.size(), 2,
                      "The rank of Input(ImInfo) must be 2.");
78 79 80 81

    int class_nums = ctx->Attrs().Get<int>("class_nums");

    ctx->SetOutputDim("Rois", {-1, 4});
82
    ctx->SetOutputDim("LabelsInt32", {-1, 1});
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    ctx->SetOutputDim("BboxTargets", {-1, 4 * class_nums});
    ctx->SetOutputDim("BboxInsideWeights", {-1, 4 * class_nums});
    ctx->SetOutputDim("BboxOutsideWeights", {-1, 4 * class_nums});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("RpnRois"));
    return framework::OpKernelType(data_type, platform::CPUPlace());
  }
};

template <typename T>
void Concat(const platform::CPUDeviceContext& context,
            const Tensor& in_tensor_a, const Tensor& in_tensor_b,
            Tensor* out_tensor) {
  int axis = 0;
  std::vector<Tensor> inputs;
  inputs.emplace_back(in_tensor_a);
  inputs.emplace_back(in_tensor_b);
  math::ConcatFunctor<platform::CPUDeviceContext, T> concat_functor;
  concat_functor(context, inputs, axis, out_tensor);
}

template <typename T>
std::vector<std::vector<int>> SampleFgBgGt(
    const platform::CPUDeviceContext& context, Tensor* iou,
111 112 113
    const Tensor& is_crowd, const int batch_size_per_im,
    const float fg_fraction, const float fg_thresh, const float bg_thresh_hi,
    const float bg_thresh_lo, std::minstd_rand engine, const bool use_random) {
114 115 116
  std::vector<int> fg_inds;
  std::vector<int> bg_inds;
  std::vector<int> gt_inds;
117 118 119
  int64_t gt_num = is_crowd.numel();
  const int* crowd_data = is_crowd.data<int>();
  T* proposal_to_gt_overlaps = iou->data<T>();
120 121 122 123 124 125 126 127
  int64_t row = iou->dims()[0];
  int64_t col = iou->dims()[1];
  float epsilon = 0.00001;

  // Follow the Faster RCNN's implementation
  for (int64_t i = 0; i < row; ++i) {
    const T* v = proposal_to_gt_overlaps + i * col;
    T max_overlap = *std::max_element(v, v + col);
128 129 130
    if ((i < gt_num) && (crowd_data[i])) {
      max_overlap = -1.0;
    }
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    if (max_overlap > fg_thresh) {
      for (int64_t j = 0; j < col; ++j) {
        T val = proposal_to_gt_overlaps[i * col + j];
        auto diff = std::abs(max_overlap - val);
        if (diff < epsilon) {
          fg_inds.emplace_back(i);
          gt_inds.emplace_back(j);
          break;
        }
      }
    } else {
      if ((max_overlap >= bg_thresh_lo) && (max_overlap < bg_thresh_hi)) {
        bg_inds.emplace_back(i);
      }
    }
  }

  // Reservoir Sampling
149
  std::uniform_real_distribution<float> uniform(0, 1);
150 151 152
  int fg_rois_per_im = std::floor(batch_size_per_im * fg_fraction);
  int fg_rois_this_image = fg_inds.size();
  int fg_rois_per_this_image = std::min(fg_rois_per_im, fg_rois_this_image);
153 154 155 156 157 158 159 160 161
  if (use_random) {
    const int64_t fg_size = static_cast<int64_t>(fg_inds.size());
    if (fg_size > fg_rois_per_this_image) {
      for (int64_t i = fg_rois_per_this_image; i < fg_size; ++i) {
        int rng_ind = std::floor(uniform(engine) * i);
        if (rng_ind < fg_rois_per_this_image) {
          std::iter_swap(fg_inds.begin() + rng_ind, fg_inds.begin() + i);
          std::iter_swap(gt_inds.begin() + rng_ind, gt_inds.begin() + i);
        }
162 163 164 165 166 167 168 169 170 171 172
      }
    }
  }
  std::vector<int> new_fg_inds(fg_inds.begin(),
                               fg_inds.begin() + fg_rois_per_this_image);
  std::vector<int> new_gt_inds(gt_inds.begin(),
                               gt_inds.begin() + fg_rois_per_this_image);

  int bg_rois_per_image = batch_size_per_im - fg_rois_per_this_image;
  int bg_rois_this_image = bg_inds.size();
  int bg_rois_per_this_image = std::min(bg_rois_per_image, bg_rois_this_image);
173 174 175 176 177 178 179 180
  if (use_random) {
    const int64_t bg_size = static_cast<int64_t>(bg_inds.size());
    if (bg_size > bg_rois_per_this_image) {
      for (int64_t i = bg_rois_per_this_image; i < bg_size; ++i) {
        int rng_ind = std::floor(uniform(engine) * i);
        if (rng_ind < fg_rois_per_this_image)
          std::iter_swap(bg_inds.begin() + rng_ind, bg_inds.begin() + i);
      }
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    }
  }
  std::vector<int> new_bg_inds(bg_inds.begin(),
                               bg_inds.begin() + bg_rois_per_this_image);
  std::vector<std::vector<int>> res;
  res.emplace_back(new_fg_inds);
  res.emplace_back(new_bg_inds);
  res.emplace_back(new_gt_inds);
  return res;
}

template <typename T>
void GatherBoxesLabels(const platform::CPUDeviceContext& context,
                       const Tensor& boxes, const Tensor& gt_boxes,
                       const Tensor& gt_classes,
                       const std::vector<int>& fg_inds,
                       const std::vector<int>& bg_inds,
                       const std::vector<int>& gt_inds, Tensor* sampled_boxes,
                       Tensor* sampled_labels, Tensor* sampled_gts) {
  int fg_num = fg_inds.size();
  int bg_num = bg_inds.size();
  Tensor fg_inds_t, bg_inds_t, gt_box_inds_t, gt_label_inds_t;
  int* fg_inds_data = fg_inds_t.mutable_data<int>({fg_num}, context.GetPlace());
  int* bg_inds_data = bg_inds_t.mutable_data<int>({bg_num}, context.GetPlace());
  int* gt_box_inds_data =
206
      gt_box_inds_t.mutable_data<int>({fg_num}, context.GetPlace());
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  int* gt_label_inds_data =
      gt_label_inds_t.mutable_data<int>({fg_num}, context.GetPlace());
  std::copy(fg_inds.begin(), fg_inds.end(), fg_inds_data);
  std::copy(bg_inds.begin(), bg_inds.end(), bg_inds_data);
  std::copy(gt_inds.begin(), gt_inds.end(), gt_box_inds_data);
  std::copy(gt_inds.begin(), gt_inds.end(), gt_label_inds_data);

  Tensor fg_boxes, bg_boxes, fg_labels, bg_labels;
  fg_boxes.mutable_data<T>({fg_num, kBoxDim}, context.GetPlace());
  CPUGather<T>(context, boxes, fg_inds_t, &fg_boxes);
  bg_boxes.mutable_data<T>({bg_num, kBoxDim}, context.GetPlace());
  CPUGather<T>(context, boxes, bg_inds_t, &bg_boxes);
  Concat<T>(context, fg_boxes, bg_boxes, sampled_boxes);
  CPUGather<T>(context, gt_boxes, gt_box_inds_t, sampled_gts);
  fg_labels.mutable_data<int>({fg_num}, context.GetPlace());
  CPUGather<int>(context, gt_classes, gt_label_inds_t, &fg_labels);
  bg_labels.mutable_data<int>({bg_num}, context.GetPlace());
  math::set_constant(context, &bg_labels, 0);
  Concat<int>(context, fg_labels, bg_labels, sampled_labels);
}

template <typename T>
std::vector<Tensor> SampleRoisForOneImage(
    const platform::CPUDeviceContext& context, Tensor* rpn_rois,
231
    Tensor* gt_classes, Tensor* is_crowd, Tensor* gt_boxes, Tensor* im_info,
232 233 234
    const int batch_size_per_im, const float fg_fraction, const float fg_thresh,
    const float bg_thresh_hi, const float bg_thresh_lo,
    const std::vector<float>& bbox_reg_weights, const int class_nums,
235
    std::minstd_rand engine, bool use_random) {
236
  auto rpn_rois_et = framework::EigenTensor<T, 2>::From(*rpn_rois);
237 238
  auto im_scale = im_info->data<T>()[2];
  rpn_rois_et = rpn_rois_et / im_scale;
239 240 241 242 243 244 245 246 247 248 249 250 251 252

  Tensor boxes;
  int proposals_num = gt_boxes->dims()[0] + rpn_rois->dims()[0];
  boxes.mutable_data<T>({proposals_num, kBoxDim}, context.GetPlace());
  Concat<T>(context, *gt_boxes, *rpn_rois, &boxes);

  // Overlaps
  Tensor proposal_to_gt_overlaps;
  proposal_to_gt_overlaps.mutable_data<T>({proposals_num, gt_boxes->dims()[0]},
                                          context.GetPlace());
  BboxOverlaps<T>(boxes, *gt_boxes, &proposal_to_gt_overlaps);

  // Generate proposal index
  std::vector<std::vector<int>> fg_bg_gt = SampleFgBgGt<T>(
253 254
      context, &proposal_to_gt_overlaps, *is_crowd, batch_size_per_im,
      fg_fraction, fg_thresh, bg_thresh_hi, bg_thresh_lo, engine, use_random);
255 256 257 258 259 260
  std::vector<int> fg_inds = fg_bg_gt[0];
  std::vector<int> bg_inds = fg_bg_gt[1];
  std::vector<int> gt_inds = fg_bg_gt[2];

  // Gather boxes and labels
  Tensor sampled_boxes, sampled_labels, sampled_gts;
261 262 263
  int fg_num = fg_inds.size();
  int bg_num = bg_inds.size();
  int boxes_num = fg_num + bg_num;
264 265 266
  framework::DDim bbox_dim({boxes_num, kBoxDim});
  sampled_boxes.mutable_data<T>(bbox_dim, context.GetPlace());
  sampled_labels.mutable_data<int>({boxes_num}, context.GetPlace());
267
  sampled_gts.mutable_data<T>({fg_num, kBoxDim}, context.GetPlace());
268 269 270 271 272 273
  GatherBoxesLabels<T>(context, boxes, *gt_boxes, *gt_classes, fg_inds, bg_inds,
                       gt_inds, &sampled_boxes, &sampled_labels, &sampled_gts);

  // Compute targets
  Tensor bbox_targets_single;
  bbox_targets_single.mutable_data<T>(bbox_dim, context.GetPlace());
274 275
  BoxToDelta<T>(fg_num, sampled_boxes, sampled_gts, bbox_reg_weights.data(),
                false, &bbox_targets_single);
276 277 278 279 280 281

  // Scale rois
  Tensor sampled_rois;
  sampled_rois.mutable_data<T>(sampled_boxes.dims(), context.GetPlace());
  auto sampled_rois_et = framework::EigenTensor<T, 2>::From(sampled_rois);
  auto sampled_boxes_et = framework::EigenTensor<T, 2>::From(sampled_boxes);
282
  sampled_rois_et = sampled_boxes_et * im_scale;
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

  // Expand box targets
  Tensor bbox_targets, bbox_inside_weights, bbox_outside_weights;
  framework::DDim bbox_expand_dim({boxes_num, kBoxDim * class_nums});
  bbox_targets.mutable_data<T>(bbox_expand_dim, context.GetPlace());
  bbox_inside_weights.mutable_data<T>(bbox_expand_dim, context.GetPlace());
  bbox_outside_weights.mutable_data<T>(bbox_expand_dim, context.GetPlace());
  math::set_constant(context, &bbox_targets, 0.0);
  math::set_constant(context, &bbox_inside_weights, 0.0);
  math::set_constant(context, &bbox_outside_weights, 0.0);

  auto* bbox_targets_single_data = bbox_targets_single.data<T>();
  auto* sampled_labels_data = sampled_labels.data<int>();
  auto* bbox_targets_data = bbox_targets.data<T>();
  auto* bbox_inside_weights_data = bbox_inside_weights.data<T>();
  auto* bbox_outside_weights_data = bbox_outside_weights.data<T>();
  int width = kBoxDim * class_nums;
  for (int64_t i = 0; i < boxes_num; ++i) {
    int label = sampled_labels_data[i];
    if (label > 0) {
      int dst_idx = i * width + kBoxDim * label;
      int src_idx = kBoxDim * i;
      bbox_targets_data[dst_idx] = bbox_targets_single_data[src_idx];
      bbox_targets_data[dst_idx + 1] = bbox_targets_single_data[src_idx + 1];
      bbox_targets_data[dst_idx + 2] = bbox_targets_single_data[src_idx + 2];
      bbox_targets_data[dst_idx + 3] = bbox_targets_single_data[src_idx + 3];
      bbox_inside_weights_data[dst_idx] = 1;
      bbox_inside_weights_data[dst_idx + 1] = 1;
      bbox_inside_weights_data[dst_idx + 2] = 1;
      bbox_inside_weights_data[dst_idx + 3] = 1;
      bbox_outside_weights_data[dst_idx] = 1;
      bbox_outside_weights_data[dst_idx + 1] = 1;
      bbox_outside_weights_data[dst_idx + 2] = 1;
      bbox_outside_weights_data[dst_idx + 3] = 1;
    }
  }
  std::vector<Tensor> res;
  res.emplace_back(sampled_rois);
  res.emplace_back(sampled_labels);
  res.emplace_back(bbox_targets);
  res.emplace_back(bbox_inside_weights);
  res.emplace_back(bbox_outside_weights);
  return res;
}

template <typename T>
class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* rpn_rois = context.Input<LoDTensor>("RpnRois");
    auto* gt_classes = context.Input<LoDTensor>("GtClasses");
334
    auto* is_crowd = context.Input<LoDTensor>("IsCrowd");
335
    auto* gt_boxes = context.Input<LoDTensor>("GtBoxes");
336
    auto* im_info = context.Input<LoDTensor>("ImInfo");
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

    auto* rois = context.Output<LoDTensor>("Rois");
    auto* labels_int32 = context.Output<LoDTensor>("LabelsInt32");
    auto* bbox_targets = context.Output<LoDTensor>("BboxTargets");
    auto* bbox_inside_weights = context.Output<LoDTensor>("BboxInsideWeights");
    auto* bbox_outside_weights =
        context.Output<LoDTensor>("BboxOutsideWeights");

    int batch_size_per_im = context.Attr<int>("batch_size_per_im");
    float fg_fraction = context.Attr<float>("fg_fraction");
    float fg_thresh = context.Attr<float>("fg_thresh");
    float bg_thresh_hi = context.Attr<float>("bg_thresh_hi");
    float bg_thresh_lo = context.Attr<float>("bg_thresh_lo");
    std::vector<float> bbox_reg_weights =
        context.Attr<std::vector<float>>("bbox_reg_weights");
    int class_nums = context.Attr<int>("class_nums");
353
    bool use_random = context.Attr<bool>("use_random");
354 355 356 357 358 359

    PADDLE_ENFORCE_EQ(rpn_rois->lod().size(), 1UL,
                      "GenerateProposalLabelsOp rpn_rois needs 1 level of LoD");
    PADDLE_ENFORCE_EQ(
        gt_classes->lod().size(), 1UL,
        "GenerateProposalLabelsOp gt_classes needs 1 level of LoD");
360 361
    PADDLE_ENFORCE_EQ(is_crowd->lod().size(), 1UL,
                      "GenerateProposalLabelsOp is_crowd needs 1 level of LoD");
362 363 364 365 366
    PADDLE_ENFORCE_EQ(gt_boxes->lod().size(), 1UL,
                      "GenerateProposalLabelsOp gt_boxes needs 1 level of LoD");
    int64_t n = static_cast<int64_t>(rpn_rois->lod().back().size() - 1);

    rois->mutable_data<T>({n * batch_size_per_im, kBoxDim}, context.GetPlace());
367
    labels_int32->mutable_data<int>({n * batch_size_per_im, 1},
368 369 370 371 372 373 374 375 376 377
                                    context.GetPlace());
    bbox_targets->mutable_data<T>({n * batch_size_per_im, kBoxDim * class_nums},
                                  context.GetPlace());
    bbox_inside_weights->mutable_data<T>(
        {n * batch_size_per_im, kBoxDim * class_nums}, context.GetPlace());
    bbox_outside_weights->mutable_data<T>(
        {n * batch_size_per_im, kBoxDim * class_nums}, context.GetPlace());

    std::random_device rnd;
    std::minstd_rand engine;
378
    int seed = rnd();
379 380 381 382 383 384 385 386 387 388
    engine.seed(seed);

    framework::LoD lod;
    std::vector<size_t> lod0(1, 0);

    int64_t num_rois = 0;
    auto& dev_ctx = context.device_context<platform::CPUDeviceContext>();

    auto rpn_rois_lod = rpn_rois->lod().back();
    auto gt_classes_lod = gt_classes->lod().back();
389
    auto is_crowd_lod = is_crowd->lod().back();
390
    auto gt_boxes_lod = gt_boxes->lod().back();
391
    for (int i = 0; i < n; ++i) {
392 393 394 395
      Tensor rpn_rois_slice =
          rpn_rois->Slice(rpn_rois_lod[i], rpn_rois_lod[i + 1]);
      Tensor gt_classes_slice =
          gt_classes->Slice(gt_classes_lod[i], gt_classes_lod[i + 1]);
396 397
      Tensor is_crowd_slice =
          is_crowd->Slice(is_crowd_lod[i], is_crowd_lod[i + 1]);
398 399
      Tensor gt_boxes_slice =
          gt_boxes->Slice(gt_boxes_lod[i], gt_boxes_lod[i + 1]);
400
      Tensor im_info_slice = im_info->Slice(i, i + 1);
401
      std::vector<Tensor> tensor_output = SampleRoisForOneImage<T>(
402 403 404 405
          dev_ctx, &rpn_rois_slice, &gt_classes_slice, &is_crowd_slice,
          &gt_boxes_slice, &im_info_slice, batch_size_per_im, fg_fraction,
          fg_thresh, bg_thresh_hi, bg_thresh_lo, bbox_reg_weights, class_nums,
          engine, use_random);
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
      Tensor sampled_rois = tensor_output[0];
      Tensor sampled_labels_int32 = tensor_output[1];
      Tensor sampled_bbox_targets = tensor_output[2];
      Tensor sampled_bbox_inside_weights = tensor_output[3];
      Tensor sampled_bbox_outside_weights = tensor_output[4];

      AppendRois<T>(rois, kBoxDim * num_rois, &sampled_rois);
      AppendRois<int>(labels_int32, num_rois, &sampled_labels_int32);
      AppendRois<T>(bbox_targets, kBoxDim * num_rois * class_nums,
                    &sampled_bbox_targets);
      AppendRois<T>(bbox_inside_weights, kBoxDim * num_rois * class_nums,
                    &sampled_bbox_inside_weights);
      AppendRois<T>(bbox_outside_weights, kBoxDim * num_rois * class_nums,
                    &sampled_bbox_outside_weights);

      num_rois += sampled_rois.dims()[0];
      lod0.emplace_back(num_rois);
    }

    lod.emplace_back(lod0);
    rois->set_lod(lod);
    labels_int32->set_lod(lod);
    bbox_targets->set_lod(lod);
    bbox_inside_weights->set_lod(lod);
    bbox_outside_weights->set_lod(lod);
    rois->Resize({num_rois, kBoxDim});
432
    labels_int32->Resize({num_rois, 1});
433 434 435 436 437 438 439 440 441
    bbox_targets->Resize({num_rois, kBoxDim * class_nums});
    bbox_inside_weights->Resize({num_rois, kBoxDim * class_nums});
    bbox_outside_weights->Resize({num_rois, kBoxDim * class_nums});
  }
};

class GenerateProposalLabelsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
B
buxingyuan 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
    AddInput(
        "RpnRois",
        "(LoDTensor), This input is a 2D LoDTensor with shape [N, 4]. "
        "N is the number of the GenerateProposalOp's output, "
        "each element is a bounding box with [xmin, ymin, xmax, ymax] format.");
    AddInput("GtClasses",
             "(LoDTensor), This input is a 2D LoDTensor with shape [M, 1]. "
             "M is the number of groundtruth, "
             "each element is a class label of groundtruth.");
    AddInput(
        "IsCrowd",
        "(LoDTensor), This input is a 2D LoDTensor with shape [M, 1]. "
        "M is the number of groundtruth, "
        "each element is a flag indicates whether a groundtruth is crowd.");
    AddInput(
        "GtBoxes",
        "(LoDTensor), This input is a 2D LoDTensor with shape [M, 4]. "
        "M is the number of groundtruth, "
        "each element is a bounding box with [xmin, ymin, xmax, ymax] format.");
    AddInput("ImInfo",
             "(Tensor), This input is a 2D Tensor with shape [B, 3]. "
             "B is the number of input images, "
             "each element consists of im_height, im_width, im_scale.");

    AddOutput(
        "Rois",
        "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4]. "
        "P usuall equal to  batch_size_per_im * batch_size, "
        "each element is a bounding box with [xmin, ymin, xmax, ymax] format.");
    AddOutput("LabelsInt32",
              "(LoDTensor), This output is a 2D LoDTensor with shape [P], "
              "each element repersents a class label of a roi");
    AddOutput("BboxTargets",
              "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * "
              "class_nums], "
              "each element repersents a box label of a roi");
    AddOutput(
        "BboxInsideWeights",
        "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * "
        "class_nums], "
        "each element indicates whether a box should contribute to loss.");
    AddOutput(
        "BboxOutsideWeights",
        "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * "
        "class_nums], "
        "each element indicates whether a box should contribute to loss.");

    AddAttr<int>("batch_size_per_im", "Batch size of rois per images.");
    AddAttr<float>("fg_fraction",
                   "Foreground fraction in total batch_size_per_im.");
    AddAttr<float>(
        "fg_thresh",
        "Overlap threshold which is used to chose foreground sample.");
    AddAttr<float>("bg_thresh_hi",
                   "Overlap threshold upper bound which is used to chose "
                   "background sample.");
    AddAttr<float>("bg_thresh_lo",
                   "Overlap threshold lower bound which is used to chose "
                   "background sample.");
    AddAttr<std::vector<float>>("bbox_reg_weights", "Box regression weights.");
    AddAttr<int>("class_nums", "Class number.");
    AddAttr<bool>(
        "use_random",
        "Use random sampling to choose foreground and background boxes.")
        .SetDefault(true);
507 508

    AddComment(R"DOC(
B
buxingyuan 已提交
509
This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
510
to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
511 512 513

RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
514
If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
515 516
If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
then it was considered as a background sample.
B
buxingyuan 已提交
517
After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
518
then we apply random sampling to make sure
B
buxingyuan 已提交
519
the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
520 521 522 523

For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.
    )DOC");
524 525 526 527 528 529 530 531 532 533 534 535 536
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(generate_proposal_labels, ops::GenerateProposalLabelsOp,
                  ops::GenerateProposalLabelsOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(generate_proposal_labels,
                       ops::GenerateProposalLabelsKernel<float>,
                       ops::GenerateProposalLabelsKernel<double>);