batch_norm_op.cu 17.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
Q
Qiao Longfei 已提交
16
#include <cfloat>
17 18 19
#include <string>
#include <vector>
#include "cub/cub.cuh"
S
Siddharth Goyal 已提交
20
#include "paddle/fluid/framework/data_layout.h"
21
#include "paddle/fluid/operators/batch_norm_op.h"
Y
Yi Wang 已提交
22 23
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cudnn_helper.h"
K
Kexin Zhao 已提交
24
#include "paddle/fluid/platform/float16.h"
Q
Qiao Longfei 已提交
25

26
DECLARE_bool(cudnn_batchnorm_spatial_persistent);
W
Wu Yi 已提交
27

Q
Qiao Longfei 已提交
28 29 30 31
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
QI JUN 已提交
32
using DataLayout = framework::DataLayout;
Q
Qiao Longfei 已提交
33 34
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
K
Kexin Zhao 已提交
35
template <typename T>
K
update  
Kexin Zhao 已提交
36
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;
Q
Qiao Longfei 已提交
37 38

template <typename T>
Q
QI JUN 已提交
39 40
class BatchNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
41 42 43
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
44
                   "It must use CUDAPlace.");
Q
Qiao Longfei 已提交
45 46 47
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
48
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
Q
QI JUN 已提交
49 50 51
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
52 53 54 55 56

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
57 58
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
59
    int N, C, H, W, D;
Q
QI JUN 已提交
60
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
61

62 63 64
    auto *y = ctx.Output<Tensor>("Y");
    y->mutable_data<T>(ctx.GetPlace());

Q
Qiao Longfei 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    // ------------------- cudnn descriptors ---------------------
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));

    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
80
#if CUDNN_VERSION_MIN(7, 0, 0)
W
Wu Yi 已提交
81 82 83 84 85
    if (FLAGS_cudnn_batchnorm_spatial_persistent) {
      mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
    } else {
      mode_ = CUDNN_BATCHNORM_SPATIAL;
    }
86
#else
Q
Qiao Longfei 已提交
87
    mode_ = CUDNN_BATCHNORM_SPATIAL;
88
#endif
Q
Qiao Longfei 已提交
89

M
minqiyang 已提交
90
    VLOG(3) << "Setting descriptors.";
Q
Qiao Longfei 已提交
91 92
    std::vector<int> dims;
    std::vector<int> strides;
Q
QI JUN 已提交
93
    if (data_layout == DataLayout::kNCHW) {
Q
Qiao Longfei 已提交
94 95 96 97 98 99 100 101 102
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * D * C, 1, W * D * C, D * C, C};
    }
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
K
Kexin Zhao 已提交
103
    // Note: PERSISTENT not implemented for inference
Q
Qiao Longfei 已提交
104
    CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
K
Kexin Zhao 已提交
105
        bn_param_desc_, data_desc_, is_test ? CUDNN_BATCHNORM_SPATIAL : mode_));
Q
Qiao Longfei 已提交
106 107 108 109

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");

Q
QI JUN 已提交
110
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
Q
Qiao Longfei 已提交
111

Q
QI JUN 已提交
112
    auto handle = dev_ctx.cudnn_handle();
Q
Qiao Longfei 已提交
113 114

    // Now, depending on whether we are running test or not, we have two paths.
115
    if (is_test || use_global_stats) {
Q
Qiao Longfei 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
      // only when test we use input to do computation.
      const auto *est_mean = ctx.Input<Tensor>("Mean");
      const auto *est_var = ctx.Input<Tensor>("Variance");
      // Run inference mode.
      PADDLE_ENFORCE_EQ(est_mean->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_var->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_mean->dims()[0], C);
      PADDLE_ENFORCE_EQ(est_var->dims()[0], C);

      CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardInference(
          handle,
          // Note: PERSISTENT not implemented for inference
          CUDNN_BATCHNORM_SPATIAL, CudnnDataType<T>::kOne(),
          CudnnDataType<T>::kZero(), data_desc_, x->template data<T>(),
          data_desc_, y->template mutable_data<T>(ctx.GetPlace()),
K
update  
Kexin Zhao 已提交
131 132 133 134
          bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
          bias->template data<BatchNormParamType<T>>(),
          est_mean->template data<BatchNormParamType<T>>(),
          est_var->template data<BatchNormParamType<T>>(), epsilon));
Q
Qiao Longfei 已提交
135 136 137 138
    } else {
      // Run training mode.
      // obtain running mean and running inv var, and see if we need to
      // initialize them.
D
Dang Qingqing 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

      auto *mean_out = ctx.Output<Tensor>("MeanOut");
      auto *variance_out = ctx.Output<Tensor>("VarianceOut");
      mean_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      variance_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());

      auto *saved_mean = ctx.Output<Tensor>("SavedMean");
      auto *saved_variance = ctx.Output<Tensor>("SavedVariance");
      saved_mean->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      saved_variance->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
          functor;
      functor(dev_ctx, saved_mean, static_cast<BatchNormParamType<T>>(0));
      functor(dev_ctx, saved_variance, static_cast<BatchNormParamType<T>>(0));

154 155 156
      if ((N * H * W * D) == 1) {
        LOG(WARNING) << "Only 1 element in normalization dimension, "
                     << "we skip the batch norm calculation, let y = x.";
157
        framework::TensorCopy(*x, ctx.GetPlace(), y);
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
      } else {
        double this_factor = 1. - momentum;

        CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardTraining(
            handle, mode_, CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(),
            data_desc_, x->template data<T>(), data_desc_,
            y->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
            scale->template data<BatchNormParamType<T>>(),
            bias->template data<BatchNormParamType<T>>(), this_factor,
            mean_out->template mutable_data<BatchNormParamType<T>>(
                ctx.GetPlace()),
            variance_out->template mutable_data<BatchNormParamType<T>>(
                ctx.GetPlace()),
            epsilon, saved_mean->template mutable_data<BatchNormParamType<T>>(
                         ctx.GetPlace()),
            saved_variance->template mutable_data<BatchNormParamType<T>>(
                ctx.GetPlace())));
      }
Q
Qiao Longfei 已提交
176 177 178 179 180 181 182 183 184
    }

    // clean when exit.
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
  }
};

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
template <typename T, int BlockDim, framework::DataLayout layout>
static __global__ void KeBNBackwardScaleBias(
    const T *dy, const T *x, const BatchNormParamType<T> *mean,
    const BatchNormParamType<T> *variance, const double epsilon, const int N,
    const int C, const int HxW, BatchNormParamType<T> *dscale,
    BatchNormParamType<T> *dbias) {
  const int outer_size = C;
  const int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ds_storage;
  __shared__ typename BlockReduce::TempStorage db_storage;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> ds_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> db_sum = static_cast<BatchNormParamType<T>>(0);

    BatchNormParamType<T> inv_var_i = 1.0 / sqrt(variance[i] + epsilon);
    BatchNormParamType<T> mean_i = mean[i];
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      ds_sum += static_cast<BatchNormParamType<T>>(dy[index]) *
                (static_cast<BatchNormParamType<T>>(x[index]) - mean_i);
      db_sum += static_cast<BatchNormParamType<T>>(dy[index]);
    }
    ds_sum = BlockReduce(ds_storage).Reduce(ds_sum, cub::Sum());
    db_sum = BlockReduce(db_storage).Reduce(db_sum, cub::Sum());
    if (threadIdx.x == 0) {
      dscale[i] = ds_sum * inv_var_i;
      dbias[i] = db_sum;
    }
    __syncthreads();
  }
}

Q
qingqing01 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
template <typename T, framework::DataLayout layout>
static __global__ void KeBNBackwardData(const T *dy,
                                        const BatchNormParamType<T> *scale,
                                        const BatchNormParamType<T> *variance,
                                        const double epsilon, const int C,
                                        const int HxW, const int num, T *dx) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == framework::DataLayout::kNCHW ? i / HxW % C : i % C;
    BatchNormParamType<T> inv_var = 1.0 / sqrt(variance[c] + epsilon);
    dx[i] = static_cast<T>(static_cast<BatchNormParamType<T>>(dy[i]) *
                           scale[c] * inv_var);
  }
}

Q
Qiao Longfei 已提交
237
template <typename T>
Q
QI JUN 已提交
238
class BatchNormGradKernel<platform::CUDADeviceContext, T>
Q
Qiao Longfei 已提交
239 240 241 242
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
243
                   "It must use CUDAPlace.");
Q
Qiao Longfei 已提交
244
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
Q
QI JUN 已提交
245
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
246 247
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");

Q
QI JUN 已提交
248 249
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
250 251 252 253 254 255
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");

    const auto &x_dims = x->dims();

256 257
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
258
    int N, C, H, W, D;
Q
QI JUN 已提交
259
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
260

261 262 263 264 265 266
    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
267 268 269
    if (d_scale && d_bias) {
      d_scale->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      d_bias->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
270
    }
Q
Qiao Longfei 已提交
271 272 273
    PADDLE_ENFORCE_EQ(scale->dims().size(), 1UL);
    PADDLE_ENFORCE_EQ(scale->dims()[0], C);

Z
zchen0211 已提交
274 275
    std::vector<int> dims;
    std::vector<int> strides;
Q
QI JUN 已提交
276
    if (data_layout == DataLayout::kNCHW) {
Z
zchen0211 已提交
277 278 279 280 281 282
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * C * D, 1, W * D * C, D * C, C};
    }
Q
Qiao Longfei 已提交
283

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    if (!use_global_stats) {
      if ((N * H * W * D) == 1) {
        framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
        math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
            functor;
        functor(dev_ctx, d_scale, static_cast<BatchNormParamType<T>>(0));
        functor(dev_ctx, d_bias, static_cast<BatchNormParamType<T>>(0));
        return;
      }

      // ------------------- cudnn descriptors ---------------------
      cudnnTensorDescriptor_t data_desc_;
      cudnnTensorDescriptor_t bn_param_desc_;
      cudnnBatchNormMode_t mode_;

      CUDNN_ENFORCE(
          platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
      CUDNN_ENFORCE(
          platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
      if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
        LOG(ERROR) << "Provided epsilon is smaller than "
                   << "CUDNN_BN_MIN_EPSILON. Setting it to "
                   << "CUDNN_BN_MIN_EPSILON instead.";
      }
      epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
310
#if CUDNN_VERSION_MIN(7, 0, 0)
W
Wu Yi 已提交
311 312 313 314 315
      if (FLAGS_cudnn_batchnorm_spatial_persistent) {
        mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
      } else {
        mode_ = CUDNN_BATCHNORM_SPATIAL;
      }
316
#else
317
      mode_ = CUDNN_BATCHNORM_SPATIAL;
318
#endif
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

      CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
          data_desc_, CudnnDataType<T>::type,
          x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
      CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
          bn_param_desc_, data_desc_, mode_));

      const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
      const auto *saved_var = ctx.Input<Tensor>("SavedVariance");
      const void *saved_mean_data =
          saved_mean->template data<BatchNormParamType<T>>();
      const void *saved_var_data =
          saved_var->template data<BatchNormParamType<T>>();

      CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationBackward(
          dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(),
          CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
          CudnnDataType<T>::kZero(), data_desc_, x->template data<T>(),
          data_desc_, d_y->template data<T>(), data_desc_,
          d_x->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
          scale->template data<BatchNormParamType<T>>(),
          d_scale->template mutable_data<BatchNormParamType<T>>(ctx.GetPlace()),
          d_bias->template mutable_data<BatchNormParamType<T>>(ctx.GetPlace()),
          epsilon, saved_mean_data, saved_var_data));

      // clean when exit.
      CUDNN_ENFORCE(
          platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
      CUDNN_ENFORCE(
          platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
    } else {
      const auto *running_mean = ctx.Input<Tensor>("Mean");
      const auto *running_var = ctx.Input<Tensor>("Variance");

      const auto *running_mean_data =
          running_mean->template data<BatchNormParamType<T>>();
      const auto *running_var_data =
          running_var->template data<BatchNormParamType<T>>();

      const int num = x->numel();
      const int block = 512;
      int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
      const int max_blocks = std::max(max_threads / block, 1);
      int grid1 = (num + block - 1) / block;
      int grid2 = std::min(C, max_blocks);

      if (data_layout == framework::DataLayout::kNCHW) {
        if (d_x) {
          KeBNBackwardData<T, framework::DataLayout::kNCHW><<<
              grid1, block, 0, dev_ctx.stream()>>>(
              d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
              running_var_data, epsilon, C, H * W, num, d_x->data<T>());
        }
        if (d_scale && d_bias) {
          KeBNBackwardScaleBias<T, block, framework::DataLayout::kNCHW><<<
              grid2, block, 0, dev_ctx.stream()>>>(
              d_y->data<T>(), x->data<T>(), running_mean_data, running_var_data,
Q
qingqing01 已提交
376
              epsilon, N, C, H * W * D, d_scale->data<BatchNormParamType<T>>(),
377 378 379 380 381 382 383 384 385 386
              d_bias->data<BatchNormParamType<T>>());
        }
      } else {
        if (d_x) {
          KeBNBackwardData<T, framework::DataLayout::kNHWC><<<
              grid1, block, 0, dev_ctx.stream()>>>(
              d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
              running_var_data, epsilon, C, H * W, num, d_x->data<T>());
        }
        if (d_scale && d_bias) {
Q
qingqing01 已提交
387
          KeBNBackwardScaleBias<T, block, framework::DataLayout::kNHWC><<<
388 389
              grid2, block, 0, dev_ctx.stream()>>>(
              d_y->data<T>(), x->data<T>(), running_mean_data, running_var_data,
Q
qingqing01 已提交
390
              epsilon, N, C, H * W * D, d_scale->data<BatchNormParamType<T>>(),
391 392 393 394
              d_bias->data<BatchNormParamType<T>>());
        }
      }
    }
Q
Qiao Longfei 已提交
395 396 397 398 399 400 401
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
K
Kexin Zhao 已提交
402
namespace plat = paddle::platform;
Q
QI JUN 已提交
403
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
404
    batch_norm, ops::BatchNormKernel<plat::CUDADeviceContext, float>,
D
dzhwinter 已提交
405
    ops::BatchNormKernel<plat::CUDADeviceContext, double>,
K
Kexin Zhao 已提交
406
    ops::BatchNormKernel<plat::CUDADeviceContext, plat::float16>);
Q
QI JUN 已提交
407
REGISTER_OP_CUDA_KERNEL(
D
dzhwinter 已提交
408
    batch_norm_grad, ops::BatchNormGradKernel<plat::CUDADeviceContext, float>,
C
chengduo 已提交
409 410
    ops::BatchNormGradKernel<plat::CUDADeviceContext, double>,
    ops::BatchNormGradKernel<plat::CUDADeviceContext, plat::float16>);